DC Circuits

- Resistance Review
- Following the potential around a circuit
- Multiloop Circuits
- RC Circuits

Homework for today: Read Chapters 26, 27 Chapter 26 Questions 1, 3, 10 Chapter 26 Problems 1, 17, 35, 77

Homework for tomorrow:

Chapter 27 Questions 1, 3, 5 Chapter 27 Problems 7, 19, 49 WileyPlus assignment: Chapters 26, 27

Review: Series and Parallel Resistors

Parallel: $1/R = 1/R_1 + 1/R_2 + 1/R_3$ *Why*?

Following the Potential

Study Fig. 27-4 in the text to see how the potential changes from point to point in a circuit.

Note the net change around the loop is zero.

Following the Potential

Note the net change around the loop is zero.

shown, which is at the *higher potential*, point *b* or point *c*?

- 1) B is higher
- 2) C is higher
- 3) They are the same
- 4) Not enough information

With the current *i* flowing as shown, which is at the *higher potential*, point *b* or point *c*?

Solution: Current flows from high to low potential just like water flows down hill.

(1) b is higher(3) they're the same

Example: Problem 27-30

$$\mathcal{E} = 6.0V$$
 $R_1 = 100\Omega$
 $R_2 = R_3 = 50\Omega$
 $R_4 = 75\Omega$

(a) Find the equivalent resistance of the network.

(b) Find the current in each resistor.

(a) Find the equivalent resistance of the network. $1/R_{234} = 1/R_2 + 1/R_3 + 1/R_4 = 16/300$ So $R_{234} = 300/16 = 19\Omega$ Now R_1 and R_{234} are in series so $R_{eq} = R_1 + R_{234} = 100\Omega + 19\Omega = 119\Omega$

(b) Now current $i_1 = \mathcal{E} / R_{eq} = 50 \, mA$

Problem 27-30 (part b)

(b) Find the current in each resistor.

First note that $i_2R_2 = i_3R_3 = i_4R_4$.

So
$$i_2 = V / R_2 = .95 / 50 = 19 mA$$
 Check: These
 $i_3 = V / R_3 = .95 / 50 = 19 mA$ three add up
 $i_4 = V / R_4 = .95 / 75 = 12 mA$ to $i_1 = 50 mA$.

Calculate i₃, find the closest single-digit number (0-9).

 $R_2 = 2\Omega$ $R_3 = 3\Omega$ $i_2 = 6A$ $i_3 = ?$

- 6) 6 A
- 7) 7 A
- 8) 8 A
- 9) 9 A

Q.27-2
$$R_2 = 2\Omega$$

 $R_3 = 3\Omega$
 $i_2 = 6A$
 $V_b - V_c = i_2R_2 = i_3R_3$
 $\therefore i_3 = \frac{i_2R_2}{R_3} = \frac{2}{3}i_2 = 4A$

More Complicated Circuits

How do we solve a problem with more than one emf and several loops? We can't do it just by series and parallel resistor combinations.

Rules for Multiloop Circuits

- The net voltage change around any loop is zero. "Energy conservation"
- The net current into any junction is zero. "Charge conservation"

Using these two rules we can always get enough equations to solve for the currents if we are given the emfs and resistances.

First define unknowns: i_1 , i_2 , i_3

Example (continued)

Left-hand loop: $\mathcal{E}_1 - i_3 R_3 - i_1 R_1 = 0$

Right-hand loop: $\mathcal{E}_2 - i_2 R_2 - i_1 R_1 = 0$ Junction:

 $i_1 = i_2 + i_3$

Algebra: solve 3 equations for 3 unknowns i_1, i_2, i_3

Loop and junction equations: $\mathcal{E}_1 - i_3 R_3 - i_1 R_1 = 0 \qquad i_1 = i_2 + i_3$ $\mathcal{E}_2 - i_2 R_2 - i_1 R_1 = 0$

Put in the given numbers and also replace i_1 by i_2+i_3 :

$$5i_1 + 30i_3 = 5i_2 + 35i_3 = 24$$

$$5i_1 + 30i_2 = 35i_2 + 5i_3 = 12$$

Solve two equations in two unknowns to get: $i_2 = 250 \, mA$ $i_3 = 650 \, mA$

Add to get $i_1 = i_2 + i_3 = 900 \, mA$

Check by using outer loop:

Exercise for the student: Same equations give <u>negative</u> i₂ in this case! This means <u>current</u> <u>going downward</u> through right-hand battery.

Back to Basics

- Examples that don't involve so much algebra, but focus on the ideas of current and voltage.
- Even though you have a multiloop circuit so you need to write down the equations from the loop rule and the junction rule, you may not have to actually solve simultaneous equations.

Simpler Examples

Both these problems can be solved for *one unknown at a time*, without messy algebra.

 $P_{in} = 9I_3 + 3I_1 = 33.3 W$ $P_{out} = 5I_1^2 + 18I_2^2 = 33.3 W$

Discharging a Capacitor

Capacitor has charge Q₀. At time t=0, close switch. What is charge q(t) for t>0?

Obviously q(t) is a function which decreases gradually, approaching zero as t approaches infinity.

What function would do this?

$$q(t) = Q_0 e^{-t/\tau}$$

But what is the <u>time constant</u> **\?**

Analyze circuit equation: find $\tau = RC$

DC Circuits II

- Circuits Review
- RC Circuits
- Exponential growth and decay

Circuits review so far

- Resistance and resistivity $R = \rho l / A$
- Ohm's Law and voltage drops $\Delta V = -iR$
- Power and Joule heating

$$P = iV$$

- Resistors in series and parallel
- Loop and junction rules

Review: Series and Parallel Resistors

Parallel: $1/R = 1/R_1 + 1/R_2 + 1/R_3$ *Why*?

Review: Rules for Multiloop Circuits

• The net voltage change around any loop is zero. "Energy conservation"

• The net current into any junction is zero. "Charge conservation"

> Using these two rules we can always get enough equations to solve for the currents if we are given the emfs and resistances.

Review example

Algebra: solve 3 equations for 3 unknowns i_1, i_2, i_3

If any i < 0, current flows the opposite direction.

Simpler Examples

Both these problems can be solved for *one unknown at a time*, without messy algebra.

Resistors R_1 and R_2 are connected <u>in series</u>. If $R_2 > R_1$, what can you say about the resistance R of the combination?

- 1. $R > R_2$
- 2. $R_2 > R > R_1$
- 3. $R_1 > R$
- 4. None of the above

- Resistors R₁ and R₂ are connected <u>in series</u>.
- $\mathbf{R}_2 > \mathbf{R}_1$.
- What can you say about the resistance R of this combination?

Solution:

$$R = R_{1} + R_{2} \quad so \quad R > R_{2}$$
(1) $R > R_{2}$
(2) $R_{2} > R > R_{1}$
(3) $R_{1} > R$
(4) None of the above

Resistors R_1 and R_2 are connected <u>in parallel</u>. If $R_2 > R_1$, what can you say about the resistance R of the combination?

- 1. $R > R_2$
- 2. $R_2 > R > R_1$
- **3.** $R_1 > R$
- 4. None of the above

- Resistors R₁ and R₂ are connected <u>in parallel</u>.
- $\mathbf{R}_2 > \mathbf{R}_1$.
- What can you say about the resistance R of this combination?

Solution:
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 so $\frac{1}{R} > \frac{1}{R_1}$
(1) $R > R_2$ (2) $R_2 > R > R_1$
(3) $R_1 > R$ (4) None of the above

Discharging a Capacitor

Capacitor has charge Q₀. At time t=0, close switch. What is charge q(t) for t>0?

Obviously q(t) is a function which decreases gradually, approaching zero as t approaches infinity.

What function would do this?

$$q(t) = Q_0 e^{-t/\tau}$$

But what is the <u>time constant</u> **\\$**?

Analyze circuit equation: find $\tau = RC$

Discharging a Capacitor

Sum voltage changes around loop:

$$Q/C-iR=0, i=\frac{Q}{RC}$$

But

 $i = -\frac{dQ}{dt} \quad \begin{array}{l} \text{Get differential} \\ equation \text{ for } Q(t): \end{array} \quad \begin{array}{l} \frac{dQ}{dt} = -\frac{Q}{RC} \\ \end{array}$ Solution: $Q(t) = Q_0 e^{-t/\tau}$

Where \blacklozenge is the <u>time constant</u> $\tau = RC$

Charging a Capacitor

 \mathcal{E} Sum voltage changes: $\mathcal{E}-iR-Q/C=0$

Е dQQ Get diff. eq.: dt RCdt R

Solution

$$Q(t) = C \mathcal{E} \left(1 - e^{-t/\tau} \right)$$

 $\tau = RC$

Charging a Capacitor

See solution gives desired behavior:

$$Q(t) = C\mathcal{E}\left(1 - e^{-t/\tau}\right)$$

$$\rightarrow 0 \quad as \ t \rightarrow 0$$

$$\rightarrow C\mathcal{E} \quad as \ t \rightarrow \infty$$

Exponential Growth and DecayThis simple differential equation occurs in
many situations: $\frac{dQ}{dt} = (Const.)Q$

If dQ/dt = +KQ, we have the "snowball" equation: growth rate proportional to size. *Population growth*. $\frac{dQ}{dt} = +KQ \longrightarrow Q = Q_0 e^{+Kt}$

If dQ/dt = -KQ, we have rate of *decrease* proportional to size. For example *radioactive decay*. $\frac{dQ}{dt} = -KQ \longrightarrow Q = Q_0 e^{-Kt}$

Try Exponential Solution

We know we want a result which increases faster and faster. One function which does this is the exponential function. So try that:

To solve
$$\frac{dQ}{dt} = KQ$$
 try $Q(t) = Q_0 e^{t/\tau}$

Questions:

- 1. Is this a solution?
- 2. If so, what is the *"time constant"* τ ?

To solve
$$\frac{dQ}{dt} = KQ$$
 try $Q(t) = Q_0 e^{t/\tau}$
 $Q(t) = Q_0 e^{t/\tau}$
 $\frac{dQ}{dt} = Q_0 \frac{d}{dt} e^{t/\tau} = \frac{Q_0}{\tau} e^{t/\tau} = \frac{Q}{\tau}$
But we want $\frac{dQ}{dt} = KQ$
So we DO have a solution IF $\tau = 1/K$

Doubling Time

If
$$Q(t) = Q_0 e^{t/\tau}$$

how long does it take for Q to double?

Radioactive Decay

For an unstable isotope, a certain fraction of the atoms will disintegrate per unit time.

For
$$\frac{dQ}{dt} = -KQ$$
 use $Q(t) = Q_0 e^{-t/\tau}$

Now τ is called the mean life, and the half-life is $T_{1/2} = \tau \ln(2) = time$ for half the remaining atoms to disintegrate, and

$$T_{_{1/2}} \cong 0.7 \, \tau$$

Discharge of a Capacitor

Back to electricity. From the loop rule we got

$$\frac{dQ}{dt} = -\frac{Q}{RC} = -KQ$$

So the solution is $Q(t) = Q_0 e^{-t/\tau}$

But what are Q_{θ} and τ ?

Initial condition:
$$Q_0 = Q(0)$$

Time constant: $\tau = 1/K = RC$

Example

A 40 pF capacitor with a charge of 20 nC is discharged through a 50 M Ω resistor.

(a) What is the time constant?

 $\tau = RC = 40 \times 10^{-12} \times 50 \times 10^{6} = 2.0 \times 10^{-3} s$ (b) At what time will ½ the charge remain? $T_{1/2} = 0.7\tau = 0.7 \times 2.0 \times 10^{-3} s = 1.4 ms$

(c) How much charge will remain after 5 ms?

$$Q(t) = Q_0 e^{-t/\tau} = 20 \times e^{-2.5} = 1.64 \, nC$$

Circuits Summary

Things to remember about DC circuits:

- Resistance and resistivity
- Ohm's Law and voltage drops
- Power and Joule heating
- Resistors in series and parallel
- Loop and junction rules
- RC circuits: charging and discharging a capacitor
- RC time constant $Q(t) = Q_0 e^{-t/\tau} \quad \tau = RC$

Quiz tomorrow on Chapters 26,27.

 $R = \rho l / A$ $\Delta V = -iR$ P = iV