DC Circuits

- Resistance Review
- Following the potential around a circuit
- Multiloop Circuits
- RC Circuits

Homework for today:
Read Chapters 26, 27
Chapter 26 Questions 1, 3, 10
Chapter 26 Problems 1, 17, 35, 77
Homework for tomorrow:
Chapter 27 Questions 1, 3, 5
Chapter 27 Problems 7, 19, 49
WileyPlus assignment: Chapters 26, 27

Review: Series and Parallel Resistors

Series:
$R=R_{1}+R_{2}+R_{3}$
Why?

Parallel:

$1 / R=1 / R_{1}+1 / R_{2}+1 / R_{3}$
Why?

Following the Potential

Study Fig. 27-4 in the text to see how the potential changes from point to point in a circuit.

Note the net change around the loop is zero.

Following the Potential

(b)

Note the net change around the loop is zero.
Q.27-1

With the current i flowing as
 shown, which is at the higher potential, point b or point c ?

1) B is higher
2) C is higher
3) They are the same
4) Not enough information

Solution

With the current \boldsymbol{i} flowing as shown, which is at the higher potential, point \boldsymbol{b} or point \boldsymbol{c} ?

Solution: Current flows from high to low potential just like water flows down hill.
(1) b is higher
(3) they're the same
(2) c is higher
(4) not enough info

Example: Problem 27-30

$$
\begin{gathered}
E=6.0 V \quad R_{1}=100 \Omega \\
R_{2}=R_{3}=50 \Omega \\
R_{4}=75 \Omega
\end{gathered}
$$

(a) Find the equivalent resistance of the network.
(b) Find the current in each resistor.

(a) Find the equivalent resistance of the network.
$1 / R_{234}=1 / R_{2}+1 / R_{3}+1 / R_{4}=16 / 300$
So $\quad R_{234}=300 / 16=19 \Omega$
Now R_{1} and R_{234} are in series so

$$
R_{e q}=R_{1}+R_{234}=100 \Omega+19 \Omega=119 \Omega
$$

(b) Now current $i_{1}=\mathcal{E} / R_{e q}=50 m A$

Problem 27-30 (part b)

(b) Find the current in each resistor.

First note that $i_{2} R_{2}=i_{3} R_{3}=i_{4} R_{4}$.

$i_{2}=V / R_{2}=.95 / 50=19 m A$
So

$$
\begin{aligned}
& i_{3}=V / R_{3}=.95 / 50=19 \mathrm{~mA} \\
& i_{4}=V / R_{4}=.95 / 75=12 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& V=i R_{234} \\
& =.050 \mathrm{~A} \times 19 \Omega \\
& =0.95 \mathrm{~V}
\end{aligned}
$$

Check: These three add up to $i_{1}=50 \mathrm{~mA}$.

$$
\begin{aligned}
& \text { Q.27-2 } \\
& R_{2}=2 \Omega \\
& R_{3}=3 \Omega \\
& i_{2}=6 A \\
& i_{3}=?
\end{aligned}
$$

Calculate i_{3}, find the closest single-digit number (0-9).
Q.27-2

$$
\begin{aligned}
& R_{2}=2 \Omega \\
& R_{3}=3 \Omega \\
& i_{2}=6 \mathrm{~A} \\
& i_{3}=?
\end{aligned}
$$

1) 1 A
2) 2 A
3) 3 A
4) 4 A

5) 5 A
6) 6 A
7) 7 A
8) 8 A
9) 9 A

$$
\begin{array}{cc}
\text { Q.27-2 } & \begin{array}{l}
R_{2}=2 \Omega \\
R_{3}=3 \Omega \\
\boldsymbol{i}_{2}=6 \mathrm{~A}
\end{array} \\
\boldsymbol{V}_{\boldsymbol{b}}-\boldsymbol{V}_{c}=\boldsymbol{i}_{2} \boldsymbol{R}_{2}=\boldsymbol{i}_{3} \boldsymbol{R}_{\mathbf{3}} \\
\therefore \boldsymbol{i}_{\mathbf{3}}=\frac{\boldsymbol{i}_{\mathbf{2}} \boldsymbol{R}_{2}}{\boldsymbol{R}_{\mathbf{3}}}=\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{i}_{\mathbf{2}}=4 \mathrm{~A}
\end{array}
$$

More Complicated Circuits

How do we solve a problem with more than one emf and several loops? We can't do it just by series and parallel resistor combinations.

Rules for Multiloop Circuits

- The net voltage change around any loop is zero. "Energy conservation"
- The net current into any junction is zero. "Charge conservation"

Using these two rules we can always get enough equations to solve for the currents if we are given the emfs and resistances.

First define unknowns: i_{1}, i_{2}, i_{3}

Algebra: solve 3 equations for 3 unknowns $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$

Loop and junction equations:

$$
\begin{array}{ll}
\boldsymbol{\varepsilon}_{1}-i_{3} R_{3}-i_{1} R_{1}=0 & i_{1}=i_{2}+i_{3} \\
\boldsymbol{\varepsilon}_{2}-i_{2} R_{2}-i_{1} R_{1}=0 &
\end{array}
$$

Put in the given numbers and also replace i_{1} by $\mathrm{i}_{2}+\mathrm{i}_{3}$:
$5 i_{1}+30 i_{3}=5 i_{2}+35 i_{3}=24$
$5 i_{1}+30 i_{2}=35 i_{2}+5 i_{3}=12$
Solve two equations in two unknowns to get:

$$
i_{2}=250 m A \quad i_{3}=650 m A
$$

Add to get

$$
i_{1}=i_{2}+i_{3}=900 m A
$$

Check by using outer loop:

$$
\begin{aligned}
& \xrightarrow{i_{3}} \stackrel{i_{2}}{\stackrel{\boldsymbol{i}_{2}}{\longrightarrow}-i_{3} R_{3}+i_{2} R_{2}-\mathcal{E}_{2}} \\
& =0 \text { ? } \\
& 24-30(.65-.25)-12 \\
& =12-30 \times .40 \\
& =12-12 \\
& =0
\end{aligned}
$$

Repeat with a different \mathbf{R}_{1}

$$
\begin{aligned}
& \varepsilon_{1}=\mathbf{2 4 V} \\
& \varepsilon_{2}=\mathbf{1 2 V} \\
& \hline \boldsymbol{R}_{1}=\mathbf{4 0 \Omega} \\
& \hline \boldsymbol{R}_{2}=\boldsymbol{R}_{3}=\mathbf{3 0 \Omega}
\end{aligned}
$$

Exercise for the student: Same equations give negative i_{2} in this case! This means current going downward through right-hand battery.

Back to Basics

- Examples that don't involve so much algebra, but focus on the ideas of current and voltage.
- Even though you have a multiloop circuit so you need to write down the equations from the loop rule and the junction rule, you may not have to actually solve simultaneous equations.

Simpler Examples

Textbook homework problem 27-19

Both these problems can be solved for one unknown at a time, without messy algebra.

$$
\begin{aligned}
& 9+18 \times I_{2}=0 \\
& 9-5 \times I_{1}+3=0 \quad I_{1}=\frac{12}{5}=2.4 A \\
& \text { Check: } \quad I_{3}=I_{1}-I_{2}=2.9 A
\end{aligned}
$$

$$
P_{\text {in }}=9 I_{3}+3 I_{1}=33.3 \mathrm{~W} \quad P_{\text {out }}=5 I_{1}{ }^{2}+18 I_{2}{ }^{2}=33.3 \mathrm{~W}
$$

Discharging a Capacitor

> Capacitor has charge Q_{0}.
> At time $t=0$, close switch.
> What is charge $q(t)$ for $t>0$?

Obviously $\mathbf{q}(\mathbf{t})$ is a function which decreases gradually, approaching zero as t approaches infinity.
What function would do this?

$$
q(t)=Q_{0} e^{-t / \tau}
$$

But what is the time constant ?
Analyze circuit equation: find $\tau=\boldsymbol{R} \boldsymbol{C}$

Charging a Capacitor

(a)

For small $\mathbf{t}, \mathbf{q}=\mathbf{0}$ and $\mathrm{i}=\mathrm{V} / \mathbf{R}$. For large $\mathbf{t}, \mathrm{q}=\mathrm{CV}$ and $\mathrm{i}=\mathbf{0}$.

$$
\begin{aligned}
& q(t)=C V\left[1-e^{-t / \tau}\right] \\
& \tau=R C
\end{aligned}
$$

(b)

DC Circuits II

- Circuits Review
- RC Circuits
- Exponential growth and decay

Circuits review so far

- Resistance and resistivity

$$
R=\rho l / A
$$

- Ohm's Law and voltage drops $\Delta V=-i R$
- Power and Joule heating

$$
P=i V
$$

- Resistors in series and parallel
- Loop and junction rules

Review: Series and Parallel Resistors

Series:
$R=R_{1}+R_{2}+R_{3}$
Why?

Parallel:

$1 / R=1 / R_{1}+1 / R_{2}+1 / R_{3}$
Why?

Review: Rules for Multiloop Circuits

- The net voltage change around any loop is zero. "Energy conservation"
- The net current into any junction is zero. "Charge conservation"

Using these two rules we can always get enough equations to solve for the currents if we are given the emfs and resistances.

Review example

Left-hand loop:

$$
\mathcal{E}_{1}-i_{3} R_{3}-i_{1} R_{1}=0
$$

Right-hand loop:

$$
\mathcal{E}_{2}-i_{2} R_{2}-i_{1} R_{1}=0
$$

Junction:

$$
i_{1}=i_{2}+i_{3}
$$

Algebra: solve 3 equations for 3 unknowns i_{1}, i_{2}, i_{3}
If any $\mathrm{i}<0$, current flows the opposite direction.

Simpler Examples

Textbook homework problem 27-19

Both these problems can be solved for one unknown at a time, without messy algebra.

Q.27-3

Resistors R_{1} and R_{2} are connected in series. If $R_{2}>R_{1}$, what can you say about the resistance R of the combination?

1. $R>R_{2}$
2. $R_{2}>R>R_{1}$
3. $R_{1}>R$
4. None of the above

Q.27-3

- Resistors R_{1} and R_{2} are connected in series.
- $\mathbf{R}_{2}>\mathbf{R}_{1}$.
- What can you say about the resistance R of this combination?

Solution:

$$
R=R_{1}+R_{2} \quad \text { so } \quad R>R_{2}
$$

$\begin{array}{ll}\text { (1) } R>R_{2} & \text { (2) } R_{2}>R>R_{1} \\ \text { (3) } R_{1}>R & \text { (4) None of the above }\end{array}$

Q.27-4

Resistors R_{1} and R_{2} are connected in parallel. If $R_{\mathbf{2}}>R_{1}$, what can you say about the resistance R of the combination?

1. $R>R_{2}$
2. $R_{2}>R>R_{1}$
3. $R_{1}>R$
4. None of the above

Q.27-4

- Resistors R_{1} and R_{2} are connected in parallel.
- $\mathrm{R}_{2}>\mathrm{R}_{1}$.
- What can you say about the resistance R of this combination?

$$
\begin{aligned}
& \text { Solution: } \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \text { so } \frac{1}{R}>\frac{1}{R_{1}} \\
& \begin{array}{ll}
\text { (1) } R>R_{2} & \text { (2) } R_{2}>R>R_{1} \\
\text { (3) } R_{1}>R & \text { (4) None of the above }
\end{array}
\end{aligned}
$$

Discharging a Capacitor

> Capacitor has charge Q_{0}.
> At time $t=0$, close switch.
> What is charge $q(t)$ for $t>0$?

Obviously $\mathbf{q}(\mathbf{t})$ is a function which decreases gradually, approaching zero as t approaches infinity.
What function would do this?

$$
q(t)=Q_{0} e^{-t / \tau}
$$

But what is the time constant ?
Analyze circuit equation: find $\tau=\boldsymbol{R} \boldsymbol{C}$

Discharging a Capacitor

Sum voltage changes around loop:

$$
Q / C-i R=0, i=\frac{Q}{R C}
$$

But
$i=-\frac{d Q}{d t} \quad \begin{array}{ll}\text { Get differential } \\ \text { equation for } Q(t):\end{array} \quad \frac{d Q}{d t}=-\frac{Q}{\boldsymbol{R C}}$
Solution: $\quad Q(t)=Q_{0} e^{-t / \tau}$
Where is the time constant $\tau=R C$

Charging a Capacitor

(a)

For small $\mathbf{t}, \mathbf{q}=\mathbf{0}$ and $\boldsymbol{i}=\boldsymbol{\mathcal { E }} / \boldsymbol{R}$
For large $\mathrm{t}, \mathrm{i}=0$ and $\boldsymbol{q}=\boldsymbol{C} \boldsymbol{E}$

But what are $q(t), i(t)$?

(b)

Charging a Capacitor

Sum voltage changes:

$$
\mathcal{E}-i R-Q / C=0
$$

$i=\frac{d Q}{d t}$
Get diff. eq.: $\quad \frac{d Q}{d t}=\frac{\boldsymbol{E}}{R}-\frac{Q}{R C}$

Solution

$$
\begin{aligned}
& Q(t)=C \varepsilon\left(1-e^{-t / \tau}\right) \\
& \tau=R C
\end{aligned}
$$

Charging a Capacitor

See solution gives desired behavior:

$$
\begin{aligned}
& Q(t)=C \mathcal{E}\left(1-e^{-t / \tau}\right) \\
& \rightarrow 0 \quad \text { as } t \rightarrow 0 \\
& \rightarrow C \varepsilon \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

(b)

Exponential Growth and Decay

This simple differential equation occurs in many situations:

$$
\frac{d Q}{d t}=(\text { Const } .) Q
$$

If $\mathrm{dQ} / \mathrm{dt}=+\mathrm{KQ}$, we have the "snowball" equation: growth rate proportional to size. Population growth.

$$
\frac{d Q}{d t}=+K Q \longrightarrow Q=Q_{0} e^{+K t}
$$

If $\mathrm{dQ} / \mathrm{dt}=-\mathrm{KQ}$, we have rate of decrease proportional to size. For example radioactive decay.

$$
\frac{d Q}{d t}=-K Q \longrightarrow Q=Q_{0} e^{-K t}
$$

Try Exponential Solution

We know we want a result which increases faster and faster. One function which does this is the exponential function. So try that:

To solve $\quad \frac{d Q}{d t}=K Q \quad$ try $\quad Q(t)=Q_{0} e^{t / \tau}$

Questions:

1. Is this a solution?
2. If so, what is the "time constant" τ ?

To solve $\frac{d Q}{d t}=K Q \quad \operatorname{try} \quad Q(t)=Q_{0} e^{t / \tau}$

$Q(t)=Q_{0} e^{t / \tau}$
$\frac{d Q}{d t}=Q_{0} \frac{d}{d t} e^{t / \tau}=\frac{Q_{0}}{\tau} e^{t / \tau}=\frac{Q}{\tau}$
But we want $\frac{d Q}{d t}=\boldsymbol{K} Q$
So we DO have a solution IF $\tau=\mathbf{1} / \boldsymbol{K}$

Doubling Time

$$
\text { If } Q(t)=Q_{0} e^{t / \tau}
$$

how long does it take for \boldsymbol{Q} to double?

$$
\frac{Q(t+\Delta t)}{Q(t)}=\frac{e^{(t+\Delta t) / \tau}}{e^{t / \tau}}=e^{\Delta t / \tau}
$$

And $e^{\Delta t / \tau}=2$ if $\Delta t / \tau=\ln (2)=0.693$
So $\quad \Delta t \cong 0.7 \tau$

Radioactive Decay

For an unstable isotope, a certain fraction of the atoms will disintegrate per unit time.
For $\frac{d Q}{d t}=-K Q \quad$ use $\quad Q(t)=Q_{0} e^{-t / \tau}$
Now τ is called the mean life, and the half-life is $\mathrm{T}_{1 / 2}=\tau \ln (2)=$ time for half the remaining atoms to disintegrate, and

$$
T_{1 / 2} \cong 0.7 \tau
$$

Discharge of a Capacitor

Back to electricity. From the loop rule we got

$$
\frac{d Q}{d t}=-\frac{Q}{R C}=-K Q
$$

So the solution is $\boldsymbol{Q}(\boldsymbol{t})=\boldsymbol{Q}_{\mathbf{0}} e^{-\boldsymbol{t} / \tau}$
But what are \boldsymbol{Q}_{0} and $\boldsymbol{\tau}$?
Initial condition: $\boldsymbol{Q}_{\mathbf{0}}=\boldsymbol{Q (0)}$
Time constant: $\tau=\mathbf{1} / \boldsymbol{K}=\boldsymbol{R} \boldsymbol{C}$

Example

A 40 pF capacitor with a charge of 20 nC is discharged through a $50 \mathrm{M} \Omega$ resistor.
(a) What is the time constant?

$$
\tau=R C=40 \times 10^{-12} \times 50 \times 10^{6}=2.0 \times 10^{-3} s
$$

(b) At what time will $1 / 2$ the charge remain?

$$
T_{1 / 2}=0.7 \tau=0.7 \times 2.0 \times 10^{-3} s=1.4 \mathrm{~ms}
$$

(c) How much charge will remain after 5 ms ?

$$
Q(t)=Q_{0} e^{-t / \tau}=20 \times e^{-2.5}=1.64 n C
$$

Circuits Summary

Things to remember about DC circuits:

- Resistance and resistivity

$$
\begin{gathered}
R=\rho l / A \\
\Delta V=-i R
\end{gathered}
$$

- Ohm's Law and voltage drops

$$
P=i V
$$

- Loop and junction rules
- RC circuits: charging and discharging a capacitor
- RC time constant

$$
Q(t)=Q_{0} e^{-t / \tau} \quad \tau=R C
$$

Quiz tomorrow on Chapters 26,27.

