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The beam-foil light source has a number of unique features which permit many new types

of experiments. Some of these features are rather subtle, but the time-resolved na-

ture of the decay process is so conspicuous that it is apparent why the first and most

widely-applied usage of this technique should be in the measurement of atomic life-

times. Because of the nearly monoenergetic properties of the beam, the time t since

excitation directly corresponds to the distance from the foil x and is given by

t=x/v ) (3.1)

where the beam velocity v is calculable from the beam energy E after the beam emerges

from the foil and the atomic mass M of the ion from

v[mm/ns]  = 13.9 (E/M)'/' [MeV/amu]"'  . (3.2)

Thus the decrease in light intensity with distance from the foil for a spectrally re-

solved emission line is a measure of the rate of relaxation of the parent level, and

directly leads to its mean life. In the absence of repopulation by cascading transi-

tions from higher levels, this mean life is proportional to the negative inverse of

the logarithmic derivative of the decay curve of the emitted light.

In addition to this obvious time-resolved nature, the beam-foil source possesses a

number of other properties which are advantageous in lifetime determinations. Mass

analysis of the ion beam assures that it is isotopically pure and free of contaminants.

It has a very low particle density (typically lo5 ions/cm3) and thus exhibits no self-

absorption, no collisional de-excitation and no inter-ionic field effects. Nearly

any charge state of any element can be excited in this manner and studied using emit-

ted optical, UV, or X-ray radiation, or, in some cases, electrons ejected through

autoionization processes. The technique permits the study of multiply-excited states,

which seem to be much more copiously populated in beam-foil excitation than in other

sources. Coupled with these advantages are, of course, a number of disadvantages.

The low particle density leads to low light levels (although the light per atom is

probably very high compared to other sources). Doppler broadening of the in-flight
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emitted radiation makes line blending a serious problem. The foil can undergo damage

and change its properties slightly with time. The population is not selective, which

complicates the decay-curve interpretation with cascade repopulation effects. Al-

though some of these factors did introduce substantial uncertainties in some of the

early beam-foil measurements, they have now been studied in great detail and methods

have been developed to reduce or circumvent their effects. Thus recent beam-foil mea-

surements must in general be considered as among the most extensive and most reliable

lifetime determinations presently available.

As is evidenced by other chapters in this book, the beam-foil source often exhibits

both coherent and anisotropic excitation. This has made possible many types of ex-

periments involving fine and hyperfine structure and Stark and Zeeman effects. Im-

provements in spectral resolution have made possible term identifications and the mea-

surement of Lamb shifts. The source can also be useful in the study of atomic colli-

sion and autoionization mechanisms. Thus beam-foil excitation is a very versatile

technique, applicable to a broad range of studies. However, the in-flight decay of

an excited ion is such a powerful technique for generating time-resolved decay curves,

and foil collisions are so unique in their excitation properties, that lifetime de-

terminations must remain one of the areas of primary emphasis in beam-foil spectro-

scopy.

In this chapter we shall describe the measurement of decay curves by the beam-foil

technique (primarily in terms of optical photon emission), the extraction of mean

lives from these decay curves, and the procedures which are utilized to assure relia-

bility of the mean lives. The emphasis will always be on beam-foil measurements, but

the techniques used for analysis are equally valid whether the decay curve is gener-

ated by in-flight decay of a beam excited by a foil, a gas stripper, or a laser beam,

or by excitation of a gas cell by a pulsed or modulated electron beam, photon beam,

or heavy-ion beam.

One word of caution is in order. A number of examples of possible pitfalls in beam-

foil measurements are described in this chapter. The point of including these (often

unlikely) troublesome cases is to indicate the degree to which beam-foil measurements

can extract reliable mean lives even under difficult circumstances. The reader should

recognize that modern beam-foil measurements routinely account for the points raised,

and are free of such systematic errors.

3.1 Lifetime Studies as a Basic Area of Atomic Physics

Measurements of atomic lifetimes have become a very active research area in a field

which was commonly treated as closed only a little over a decade ago. Although many
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aspects of this development are more thoroughly treated elsewhere in this book, it

is fitting that a discussion of lifetime measurements begin with a brief account of

their importance and sudden emergence as a basic research area.

3.1.1 The Need for Lifetime Measurements

Lifetime measurements are needed both to improve fundamental knowledge of atomic

structure and to meet specific needs in areas such as astrophysical abundance deter-

minations, plasma diagnostics and optical excitation processes. Solar abundance de-

terminations have been perhaps the most dramatic use of lifetime data, and estimates

of solar abundances of iron-group and rare-earth-group elements have been changed by

factors up to ten by beam-foil measurements. These measurements are particularly

valuable because of the difficulties which the iron and rare-earth groups present to

theoretical calculations. The current status of lifetime measurements and solar abun-

dances is described in a recent review article by SMITH [3.1]. Lifetime measurements

have also been useful in the determination of abundances in the interstellar medium

from satellite data [3.2,3]. Sophisticated theoretical techniques have been developed

for the calculation of atomic transition probabilities; these techniques require ex-

perimental determinations in order to select among various approximation techniques.

These theoretical techniques have been reviewed by several authors [3.4-71, and are

extensively treated in this volume also (see chapters 4 and 5). Lifetime data are

particularly useful when they can be extrapolated along isoelectronic or homologous

sequences [3.8,9], so that a well-placed measurement in one element can provide in-

creased reliability for neighboring elements.

Most applications for atomic lifetime measurements are to specify emission and absorp-

tion of radiation under steady-state or dynamical circumstances, quite unlike the

free-decay conditions under which a lifetime manifests itself so clearly. Therefore

the lifetime results must (except for unbranched decays) be combined with branching-

ratio data and presented in terms of spontaneous transition probabilities (A-values)

and absorption oscillator strengths (f-values). These quantities are defined and

their inter-relations presented in Subsection 3.2.2. It is possible to measure A-

values and f-values directly by techniques such as emission from arcs and shock tubes,

absorption by a vapor or slow atomic beam, and anomalous dispersion. However, these

measurements require a knowledge of the density of the radiating atoms, which has been

a source of considerable error, and are generally restricted to the neutral species

and also to resonance transitions. A number of extensive review articles which com-

pare the various methods for measuring lifetimes, A-values, and f-values are available

[3.10-161. Relative A-values and f-values can be measured more reliably than absolute

values, and provide the necessary complement to lifetime measurements. Since a life-

time measurement compares only the intensity of a given transition with itself at dif-

ferent times, it requires a knowledge neither of the density of radiating particles
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nor of the efficiency of the detection system. Thus lifetime measurements provide a

highly reliable and indispensable overall normalization for A-value and f-value deter-

minations.

3.1.2 Lifetime Measurements Prior to the Development of the Beam-Foil Technique

It is not possible to separate the development of atomic lifetime measurements from

that of nuclear lifetime measurements, for it involves a succession of adaptations

of nuclear discoveries and techniques to an atomic context.

Although the mathematical concepts of exponential growth and decay are as ancient as

the geometric progression, and many examples of exponential and multiexponential pro-

cesses exist in nature, measurement inaccuracies and the influence of external condi-

tions prevented rate constants from being interpreted as fundamental properties of

statistical processes until the discovery of radioactivity [3.17]. The nuclear expo-

nential decay law was discovered by RUTHERFORD [3.18], when a gaseous decay product

migrated from a natural radioactive source and decayed to lay a deposit on a nearby

surface, thus producing a separated radioactive source with a lifetime of a few hours.

In 1900 RUTHERFORD and SODDY [3.19-211 chemically separated a decay product with a

lifetime of a few days from its long-lived parent and observed the recovery, or "grow-

ing in", within the parent. This established the importance of the cascade repopulated

decay curve. RUTHERFORD and SODDY also introduced the concepts of a "half-life" and

a "mean life" into the terminology in 1904 [3.22,23].  In 1905 VON SCHWEIDLER [3.24]

showed that the exponential decay law can be deduced from the laws of chance with the

assumptions that the probability of decay is constant in time and the same for all

members of the same species. It is significant that it was in lifetime measurements

that this first clear encounter with a process which is not accessible to causality

occurred [3.25]. In 1910 BATEMAN [3.26] solved the set of coupled differential equa-

tions which describes the unbranched case of sequentially-cascaded decay, and these

solutions were applied to the study of the natural radioactive series. It is inter-

esting to note that the possibility of multiple direct cascading was ignored, since

the natural radioactive chain members have at most one a-decay and one B-decay feeder

level, which differ by many orders of magnitude in lifetimes. (This is to be con-

trasted with the application to atomic lifetimes, in which the earliest assumptions

were that all cascading is direct. The subtleties of indirect cascading described in

Subsection 3.6.1 have only recently been considered). Thus lifetimes were among the

first nuclear properties to be systematically studied.

The use of lifetime measurements as an indicator of atomic structure has developed at

a much slower pace than its nuclear counterpart. Atomic term-value analysis began

with Kirchhoff and Bunsen in 1859, and by 1913 had been refined to the level of the

Bohr atom. A few quantitative attempts to measure post-excitation radiation from
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free atoms had been made by this time, such as the 1908 canal-ray studies of WIEN

[3.27] and the 1913 work of DUNOYER [3.28], the latter of whom sent sodium atoms

through a beam of sodium light and attempted unsuccessfully to photograph light from

the emerging atoms. However, it was not until 1916 that the concept of an atomic

disintegration constant was formally introduced by EINSTEIN [3.29,30],  in an analysis

of the atomic radiation process which was constructed in close analogy with nuclear

radioactivity. A dynamical calculation of an atomic mean life was performed in 1919

by WIEN [3.31] which combined classical radiation theory with the Bohr atom. It is

perhaps indicative of the general underestimation of the importance of atomic mean

lives that the WIEN mean-life formula was forgotten, while the Bohr term-value formula

appears in nearly all elementary atomic physics textbooks. WIEN's work has been re-

viewed and the terminology updated [3.32], and is worth recalling here. WIEN assumed

that a quantum of energy becomes available after an electron passes from one allowed

Bohr orbit to another, and is thus radiated from the latter orbit at constant centri-

petal acceleration. For circular orbits this yields

3x3c2
II

3 2

T=16n3a2n= 1oot.33 + EnsI ,
0 f "f

(3.3)

where A is the radiated wavelength measured in angstroms, 5 the net charge of the nu-

cleus and core electrons, cx the fine-structure constant, a o the Bohr radius, c the

speed of light, and nf the principal quantum number of the final orbit. This classi-

Cal formula gives surprisingly accurate results [3.32] and can often provide a good

first approximation. The quantum mechanical theory of transition probabilities was

developed by DIRAC [3.33,34]  in 1926, but mean-life measurements were not then con-

sidered a crucial test of quantum theory. However a number of measurements of mean

lives were made, and it is noteworthy that in-flight decays of atomic beams were among

the first methods used. WIEN [3.27,31,35] performed a series of experiments using

in-flight decay of canal rays, which were the precursors of beam-foil and beam-gas

spectroscopy. Similar canal-ray mean-life experiments were also performed by DEMPSTER

[3.36,37] and others [3.38-421. WALLERSTEIN [3.43] applied electric and magnetic

fields to canal rays and observed the first excited beam quantum beats, but this tech-

nique fell dormant with the death of WIEN in 1928. In 1932 KOENIG and ELLETT [3.44]

optically excited a thermal atomic beam and observed its in-flight decay in a geom-

etry very much like that of a modern beam-laser experiment. Although this work was

qualitatively repeated by SOLEILLET [3.45], this technique also fell into disuse.

Early forms of pulsed-electron-beam gas excitation and Kerr-cell chopped-photon-beam

excitation methods were also developed in the 1920's. A review of mean-life experi-

ments performed prior to 1933 is given by MITCHELL and ZEMANSKY [3.10], and a perusal

of these results attests to the lack of nanosecond time resolution so vital to atomic

mean-life measurements. Thus the modern era of atomic mean-life measurements did not

begin until after the development of nanosecond response phototubes and coincidence
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circuits and their application to nuclear-physics measurements after World War II

[3.46].

The first application of delayed-coincidence measurements to atomic mean lives was by

HERON et al. [3.47,48], in a pulsed electron-beam experiment performed in 1954. How-

ever, they used a single-channel method which viewed only one fixed delay window at

a time, and hence suffered from low detected intensity. A variation of this experi-

ment was performed in 1955 by BRANNEN et al [3.49] who also used electron excitation,

but with delayed coincidences between the cascade and primary photons. Again, single-

channel techniques were used, and intensity problems were encountered. In 1961 BEN-

NETT [3.50] adapted multichannel-analyzer techniques, developed in the mid-1950's for

nuclear-physics applications, to pulsed electron-beam delayed-coincidence measurements.

This provided an instrument which is equally sensitive to photons over a wide range

of times after excitation, and greatly increased the usable intensity. In this form,

this technique came into fairly wide use at the same time that beam-foil spectroscopy

was being developed by KAY [3.51] and by BASHKIN [3.52], which ushered in the period

of intense activity in mean-life measurement which is still in progress.

3.2 Definitions of Basic Quantities

Since the primary purpose of a mean-life measurement is to obtain atomic transition

probabilities and absorption oscillator strengths, we shall list the relationships

among these various quantities with particular emphasis upon their connection to a

mean-life measurement. We use the nomenclature of CONDON and SHORTLEY [3.53], and

denote an atomic level as corresponding to a given value of total angular momentum J,

which in the absence of external fields consists of (2J+l)  degenerate states (or sub-

levels), each specified by a different projection M of the angular momentum along

some prescribed axis (for our purposes, the beam direction). All other quantum num-

bers are denoted simply by y, and the set of levels which have the same y is called

aa A transition between levels gives rise to a a, a transition between states

is called a component, and a set of transitions between terms is a multiplet. For

compactness, we shall generally denote a set of quantum numbers by a single subscript,

and indicate in the text whether this refers to a state or to a level, or to both.

An exception will occur in discussions of alignment and polarization in which the

quantum numbers (y J M) will appear explicitly to avoid confusion.

3.2.1 Instantaneous Populations

It is standard practice in mean-life studies to speak of the instantaneous populations

of the various decaying states and levels. This description is not always relevant

for beam-foil excitation since the eigenstates which are populated by the source are
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not necessarily the same as those of the radiative decay process. Thus the excitation

Hamiltonian may not be diagonal in the representation which diagonalizes the decay

Hamiltonian. The decaying states are then said to be coherently excited, and can ex-

hibit quantum beats. Since we are primarily concerned here with measuring mean lives

it is important to seek conditions which preclude quantum beats. We shall therefore

restrict our discussions to situations in which (a) fine-structure levels are so dis-

tinct in energy that coherences between them are unlikely to take place, (b) the foil

is axially symmetric about the beam so that there are no coherences between different

M states [3.54], (c) there are no external fields to mix the states, and (d) hyperfine

interactions are negligible. Under these circumstances there can be no coherences

between states quantized with respect to the beam, and their individual state popula-

tions, as well as their combined level populations completely describe the excitation

without recourse to density-matrix methods.

3.2.2 Transition Probabilities and Oscillator Strengths

In an emission process, the instantaneous rate of spontaneous photon emission IuR be-

tween an upper state or level u, to which Nu atoms are excited, and a lower state or

level II, is given by [3.29,30]

I
UR

= NuAull  , (3.4)

where AuL is the spontaneous transition probability. In an absorption process, NL

atoms in a lower state or level R are equivalent, in radiative absorption to the state

or level u, to n classical harmonic oscillators given by [3.55]

n = NL fllu > (3.5)

where fllu is the absorption oscillator strength. For transitions between levels, the

quantities are related by

gRfiu = J!!c--  A
2 x 2

&Ze2 UR guAu = I I258?7  guAuR  ’

where AuR is the transition wavelength in Angstrom units, g, and gR are the degenera-

ties of the upper and lower levels, respectively, and Aull  is measured in nanoseconds.

For components, the expressions are the same, except the degeneracies do not appear.

The mean life ~~ and its inverse a,, are defined according to

(3.7)

Thus f-values can be computed from inverse mean lives through the relationship
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life measurement and must be

(3.8)

branching ratio, which cannot be determined in a mean-

obtained through some other source. Inverse mean lives

can be computed from f-values through the relationship

clu = ; *;8*.7 * 4egfeu
i I.

UR U
(3.9)

In theoretical calculations, it is convenient to define the line strength S, which

is symmetric in emission and absorption. It is related to the transition probability

by

s a (huR)2L+1  g, Au8 , (3.10)

where L is the multipolarity of the emitted radiation. The proportionality constants

for El, Ml, and E2 radiation are presented by SHORE and MENZEL [3.56,p.445]. Under

the assumption of spin-orbit coupling, the line strength is the same for all levels

in a multiplet [3.57], and if the A-value or f-value for one line in a multiplet is

known, the values for all other lines in that multiplet can be obtained by appropriate

wavelength and degeneracy corrections.

3.3 Measurement of Beam-Foil-Excited Decay Curves

Subsequent sections will describe refined techniques for extracting mean lives from

decay curves. However, the most important part of any mean-life measurement lies not

in the analysis, but in the experimental measurement itself, which must be designed

to obtain the most reliable and informative decay-curve information possible.

3.3.1 Strengths and Limitations of the Beam-Foil Technique

Beam-foil excitation is by far the most widely used method of direct mean-life mea-

surement, and more mean-life measurements have been made by this technique than by

all other direct techniques combined. For example, a summary of transition probabili-

ties for atomic absorption lines formed in interstellar clouds has recently been com-

piled by MORTON and SMITH [3.58], who cite 159 mean-life measurements of 101 multi-

plet transitions. Of these, 96 are beam-foil, 44 are modulated electron-beam phase-

shift, 8 are pulsed electron-beam delayed-coincidence, 6 are modulated resonance-radi-

ation phase-shift, 3 are high-field level-crossing and 2 are Hanle measurements. Fur-

ther, the transitions in this compilation are not even particularly well suited to



71

beam-foil methods, since only 18 of the 101 transitions were in atoms more than once

ionized. Similarly, LAUGHLIN and DALGARNO [3.59] have recently presented a comparison

between theoretical calculations and experimental measurements of transition probabili-

ties along isoelectronic sequences of Be, B and N, and cite 67 mean-life measurements

of 24 transitions. Only 5 of these measurements were by methods other than beam-foil.

Thus, because of its wide use, beam-foil excitation is often applied to systems for

which it is not the optimum technique available. For example, decay curves of tran-

sitions from singly-excited levels in neutral or singly-ionized atoms could in general

be measured by pulsed-electron beam-gas delayed-coincidence techniques with much bet-

ter wavelength resolution (hence less blending) and higher signal-to-noise ratios than

are possible using beam-foil methods. One factor which militates against the beam-

foil technique for the important case of neutral atoms is that very few neutrals

emerge from a foil. Of course, the yield of neutrals is enhanced by working at the

smallest possible particle velocity, but this introduces two serious handicaps. For

one, beam scattering becomes especially serious. For another, foil life becomes quite

short, particularly for heavy ions.

The alternative of the pulsed electron-beam method has been developed to a high degree

of sophistication by a number of workers [3.60-631  which makes it an extremely attrac-

tive technique to complement beam-foil methods. This is particularly true in view of

the developments introduced by ERMAN [3.16] in which high-frequency deflection tech-

niques, combined with kilovolt electron beams, make possible nanosecond pulses at

megahertz repetition rates with average currents of several milliamps during the pulse.

The technique also has the advantage of a variable time window, so that long-lived

components can be followed on one time scale, short-lived components on another, and

a combined analysis performed. Thus, any transition which can be strongly excited by

pulsed-electron beam-gas techniques can probably be more favorably measured by these

techniques than by beam-foil methods, if appropriate equipment is available.

The mean lives which can be extracted from beam-foil decay curves are generally lim-

ited to the range from 10m6s to lo-l1 s, although values as short as 3.7 x 10-12 s have

recently been reliably extracted by BARRETTE and DROUIN [3.64] using new high spatial

resolution techniques. The beam velocity must lie between the speed of light and the

slowest speed with which ions can emerge from the foil in a collimated beam. The

measurable flight paths are between the shortest beam length resolvable by the optical

system and the furthest downstream distance which can be viewed without beam spreading

distortions or loss of the signal in the background. It must be kept in mind that a

proper  determination of a decay curve requires that one make measurements at a number

of points. Thus a reasonable, practical limitation on the shortest beam length one

can use is approximately 10 times the shortest resolvable length. These considera-

tions have been examined by BROMANDER [3.65], who devised the plot shown below in
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Fig.3.1 to illustrate the measurable mean-life ranges using various types of accelera-

tors.

TANDUM VDG

VAN DE GRAAFF

ISOTOPE SEPARATOR

I I 1 I U =,IO'ma- , I
IO-” lo-‘0 10-g 10-8 10-T 10-e 10-5

LIFETIME 6)
Fig.3.1 Limitations of the beam-foil technique for lifetime measurements. The

ranges for the most commonly-used accelerators (Isotope separator, single-

ended Van de Graaff, Tandem Van de Graaff and HILAC) are indicated.

(Courtesy of Dr. J. Bromander [3.65])

Most of the weaknesses of the beam-foil technique are traceable either directly or

indirectly to the low light levels involved, and could be eliminated if higher re-

solving power could be used. The strengths of the technique lie in the unparalleled

ability of the beam-foil source to excite all types of ions to high ionization de-

grees, high excitation states, and multiply-excited states. For detailed descriptions

of these areas, the reader is referred to recent review articles on beam-foil spectro-

scopy by MARTINSON and GAUPP [3.66],  by BASHKIN [3.67],  and by MARTINSON [3.68,69],

and to a recent review article on multiply-excited states by BERRY [3.70].

3.3.2 Details of Beam-Foil Apparatus and Measurement Procedures

The widespread use of the beam-foil technique is probably due in part to the reason-

ably simple nature of the basic experimental apparatus, which is relatively inexpen-

sive if a suitable accelerator facility is available. However, in the past several

years rather sophisticated instrumentation and refined data-acquisition procedures

have been incorporated into beam-foil lifetime measurements, which have substantially

improved the accuracy of the data. Many of these techniques were developed primarily

in efforts to resolve short-period quantum beats in fine- and hyperfine-structure mea-

surements, and exceed normal requirements for mean-life work. Since quantum beats and
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mean-life decay curves are often measured in the same laboratory on the same appara-

tus, this has led to a marked increase in the precision to which lifetime measurements

are now routinely performed.

Modern beam-foil measurements are in sharp contrast to those of a decade ago, when

the paucity of mean-life data justified order-of-magnitude estimates. Thus, in the

early 1960's, a beam-foil study could provide valuable information by classifying

level mean lives as "short", "medium", or "long" according to the length of a wave-

length-dispersed photograph of the beam. As required accuracies have risen, measure-

ment techniques have been refined, and the uncertainties in the earlier measurements

must not be allowed to compromise the high reliability of modern beam-foil measure-

ments.

Today, beam-foil decay-curves are usually obtained by stepwise translating the (5-20

ug/cm*) foil [3.71] along the beam axis, referenced relative to a fixed point in the

evacuated (10e6 tort-) foil chamber which is viewed by a high-speed optical system.

The foil motion is achieved by a trolley which is driven by a precision machine screw

with low backlash and high positional accuracy and reproducibility [3.72], often to

within + 0.05 mn. From 20 to 40 foils are mounted on a rotatable turret, and a given

foil can be reproducibly selected by an external control dial and indicator. The

foil-translation mechanism is usually driven by a stepping motor which is shaft en-

coded to provide a channel-advance signal to a multichannel analyzer operated in the

multiscaling mode. The output of the optical detection system is thus accumulated

in a separate scaling channel for each position of the foil relative to the viewed

position. The step size (as short as 0.1 mm) and the total number of steps are pro-

grammable (in some laboratories they are controlled by an on-line computer), and the

travel is recycled many times to signal-average any instrumental drifts, beam fluctu-

ations, or foil aging. If the signal averaging is done over many cycles, the step-

ping motor can be advanced after equal amounts of time at each foil position. How-

ever, in order to remove the effects of beam fluctuations, the stepping-motor advance

is more often gated by collection of a fixed amount of some monitoring quantity in-

dicative of the instantaneous excitation to the level studied. One type of system

uses the total beam charge collected in a Faraday cup, but this is sensitive to the

a\lerage  charge state leaving the foil; that average charge can change with foil aging.

A more commonly-used system which avoids this problem collects light from the transi-

tion studied at a fixed distance from the foil, either directly by a foil-fixed photo-

tube, or through a fiber optics link to a second monochromator and phototube. In

either case, the signal either averages to the same total accumulation time in each

channel, or a channel-by-channel dark-count correction is made.

The details of the optical system vary with the wavelength region, but single-photon

detection techniques are used almost exclusively. For the optical wavelength region,
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a lens focuses light onto the entrance slit of a monochromator from a segment of the

beam often 0.1 mm or shorter in length. This resolution can be checked by quantum-

beat measurements, and focus is often achieved by translating the foil past the opti-

cal system and minimizing the travel necessary for the light to rise from near ex-

tinction on the upstream side to its full value on the downstream side. When one

views closer than 1 mm to the foil, the foil holder begins to vignette the collected

light, so the sharpness of the rise does not indicate the actual spatial resolution.

Since the light is not strong, a fast (low dispersion) monochromator is used, with

low resolution to admit the Doppler-broadened spectral lines. The spectrometer is

refocused to a moving source to minimize this broadening [3.73-761.  A low-noise photo-

multiplier tube is placed at the exit slit. Some photomultiplier tubes are cooled

to reduce the dark-count rate to a few per second. In the vacuum UV wavelength region,

a lens can not be used, but grating masks are used to limit the beam length viewed,

and channel electron multipliers or sodium-salicylate-coated photomultiplier tubes

serve as photon detectors. The optical system usually views at an angle 90" with the

beam, but occasionally an oblique angle is used to follow a very short mean life into

the foil.

The system described above is typical of most modern beam-foil laboratories and, al-

though the specific details may vary somewhat, it should provide a general guide to

the procedures presently used. A representative modern beam-foil decay-curve is

in Fig.3.2.

4

0 50 40 60

Distance from foil (mm)

Fig.3.2 Representative beam-foil intensity decay-curve for the 23488 Be I line

(2s2 ' S - 2s2p 'P) measured at 180 keV ion energy [3.144]

A number of possible pitfalls exist which are carefully examined as part of any mea-

surement. One such problem involves the fact that the foil characteristics change

slightly during bombardment. It was observed by CHUPP et al. [3.77] that the energy
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thickness of the foil increases with bombardment. This was investigated by BICKEL and
.+BUCHTA [3.78], who determined that for an 80 keV Li ion beam incident upon a carbon

foil, the foil increased its thickness at 2.7 pg/cm2/hour. At energies for which the

energy loss in the foil is a reasonable fraction of the total beam energy, foils are

therefore replaced often and energy analyses are made frequently. The foil also

broadens the beam velocity distribution. Errors introduced into mean lives by beam

velocity straggling and beam spreading due to interaction with the foil have been in-

vestigated by CURTIS et al. [3.79] and by KAY [3.80], who present calculations which

indicate that these effects are negligible, even at rather low beam velocities. The

possibility that beam spreading could cause ions to escape from the viewing volume

has been studied by ETHERTON et al. [3.81]. They found that by placing a chamber-

fixed beam collimator just upstream of the spectrometer slit and monitoring on Faraday

cup current, these effects became negligible even at distances corresponding to more

than 70 ns from the foil. The most important foil-dependent quantity requiring accu-

rate determination is the average velocity of the foil-emergent particles. Several

methods for its determination are available. A post-foil electrostatic energy ana-

lyzer [3.82] is one common method. Another method utilizes the Doppler shift of the

in-flight emitted spectral line when viewed at a skew angle to the beam [3.83]. It

is also possible to determine the velocity by a measurement of a precisely known quan-

tum-beat frequency. Some beam-foil laboratories have facilities for beam pulsing

[3.84] which permit the use of delayed-coincidence time-of-flight measurements to de-

termine foil-emergent particle velocities. Another common approach is to calibrate

the accelerator energy, using various nuclear resonances and thresholds [3.85]. The

thickness of the foil can then be determined by optical transmission [3.86] or proton

energy-loss measurements and the energy loss of the ion in the foil computed from

theoretical estimates [3.87-891. However, there is some indication that the theoreti-

cal estimates are not directly applicable to the beam-foil case, and may overestimate

losses due to ions scattered in nuclear encounters, which tend to be removed from the

forward-going beam [3.90]. This is particularly crucial in the case of very heavy

ions, where the energy loss in the foil may be an appreciable fraction of the total

energy, and researchers usually choose one of the direct velocity measurement tech-

niques for such work.

Another problem involves line blending. Since the beam-foil source requires fast op-

tics and wide acceptance angles viewing a moving source, severe Doppler broadening is

unavoidable. Thus there is a chance, particularly for rich spectra, that the tails

of neighboring lines will overlap with the line measured, adding unrelated components

to the decay curve of interest. A number of approaches to this problem are available.

The spectrum can be examined for blending under conditions which can reduce Doppler

widths [3.66,Table 31 even though these conditions are not themselves suitable to

lifetime determinations. If the decay is branched, or is part of a multiplet, the
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various branches or related lines can be separately measured and compared. The decay

curve can also be measured for equivalent times both on and off the line peak; slow-

varying backgrounds should vanish from the difference between these measurements

[3.91]. Thus the effects of line blending may occasionally lead to increased uncer-

tainties in lifetimes, but that is probably not the most serious limitation brought

about by blending. It is unfortunate that the possibilities of blending generally

restrict the application of the beam-foil source to strong lines, which stand up above

the tails of neighboring lines, and to lines which are well separated from their

neighbors.

One of the most widely discussed problems in beam-foil excitation involves cascade

repopulation of the levels, which introduces the mean lives of higher-lying levels

into the time dependence of the decay of each level. The analysis of these effects

has been greatly aided by improved measurement techniques. Sub-millimeter spatial

resolution and closely-spaced data points, together with low-noise detection equipment

which permits measurement far out onto the decay-curve tails, have made possible very

elegant numerical analyses. The general problem of cascade effects is described in

detail in the next subsection, where we shall see that an adequate allowance for cas-

cading in beam-foil measurements can be made in all but the most unusual circumstances.

These rare cases where cascade effects can be serious and methods for handling them

are discussed in Section 3.6.

Thus the quality of beam-foil decay-curve measurements has undergone a vast improve-

ment in recent years, both in terms of the sensitivity of its instrumentation and in

the procedures which are routinely performed to assure reliability. The low light

intensities do not permit signal-to-noise ratios as favorable as in sources such as

electron beam excitation, but with sufficient data accumulation time, decay curves of

comparable quality can be obtained.

3.3.3 Cascade Repopulation - A Tractable Problem

AS we saw in subsection 3.1.2, the problem of cascade repopulation has been familiar

since the discovery of radioactivity, but for practical reasons the measurement of

lifetimes in atomic systems greatly enlarges cascade contributions. This can be seen

by observing that atomic mean lives usually lie between the nanosecond and the milli-

second range, while the mean lives of the natural radioactive series range from half

a microsecond to 20 billion years. Thus mean lives of cascade-coupled atomic levels

are much more likely to overlap on a given time scale. Further, atomic systems have

more closely spaced levels with fewer transitions forbidden by selection rules than

are generally found in nuclei. Thus, multiple direct cascading, while common in atom-

ic systems, is virtually non-existent in natural radioactivity.

The atomic cascade problem was discussed by WIEN [3.35,p.435] in 1927 and is present

in essentially all generally applicable atomic excitation sources, and efforts to
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eliminate it often introduce problems much more serious than cascading. For example,

the pulsed-electron beam-gas source can be made cascade-free by the use of threshold

excitation, which excites no levels above the level of interest. This has a number

of drawbacks. In particular, excitation cross sections become vanishingly small near

threshold, and light outputs are not sufficient unless high gas pressures are used,

which introduce the possibilities of collisional de-excitation and radiation trapping.

BENNETT and KINDLMANN [3.92] have made such measurements for neon, and DONNELLY et al.

[3.93] have used this technique with noble-gas ions, but it has not been generally

applied to other elements. Another technique to eliminate cascade effects from elec-

tron beam-gas excitation studies is to measure delayed coincidences between the cas-

cade photon and the photon from the level of interest [3.94,95]. Again the cascades

are eliminated at great cost, with the true coincidence rates down by 3 to 4 orders

of magnitude from the singles rates. Still a third technique measures delayed coinci-

dences between the inelastically-scattered electron beam and the decay photon [3.96].

This technique, although promising, requires an experimental system of considerable

complexity, and has had limited application, primarily in neutral gases and molecules.

In modulated electron-beam phase-shift measurements, the cascades are studied through

the frequency dependence of the phase shift. Analysis often treats the system as if

only a single direct cascade were present, which is not a probable situation. The

general relationship for the phase shift as a function of frequency for an arbitrarily

cascaded and blended level has been calculated by CURTIS and SMITH [3.97], but com-

puter simulations indicate that present experimental accuracies are not sufficient

to extract more than one or two cascades from phase-frequency curves.

Excitation by optical radiation can eliminate cascades, but this generally provides

access only to levels optically connected to the ground state or to metastable states.

When resonance fluorescence techniques such as the Hanle effect and high-field level-

crossing are extended to study non-resonance transitions through electron-beam or

beam-foil methods, they also acquire cascade repopulation effects. DUFAY [3.98] has

formally computed the cascade contributions to the Hanle effect. However, to evaluate

the extent to which cascades affect these techniques requires a knowledge of the align-

ment and transfer of alignment of the cascade levels. It is sometimes conjectured

that the transfer of alignment in these cases is slight, but the situation is extremely

difficult to analyze quantitatively.

Despite the fact that cascades are a comparable problem in nearly every type of mean-

life measurement, the words "cascade errors" have become synonymous with the beam-foil

source. This is unfortunate in view of the high accuracy of modern beam-foil measure-

ments, and is partially due to the extreme care with which beam-foil experimenters

have approached the cascade problem. Other measuring techniques are often beset with
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so many problems (pressure dependence, sample purity, rf pickup, etc.), that the cas-

cades become of secondary importance. In beam-foil work, these problems are absent,

and only the cascades remain, so they are carefully discussed in each paper.

There are a few cases of beam-foil measurements made prior to 1971 which lacked a suf-

ficient dynamic time range and missed subnanosecond components or very long-lived cas-

cades. Some values were thus reported which substantially overestimated the true mean

lives. Most of these values have now been revised by subsequent remeasurements, so

some care must be taken as to the origin of a given mean life to be sure that it is

the currently accepted result. However, there are certain small trends which are im-

portant to consider.

In a report of their recent calculations, LAUGHLIN and DALGARNO [3.55] present a com-

parison of experimental and theoretical mean lives for a number of isoelectronic se-

quences, and report that, "The experimentally-determined transition probabilities are

invariably smaller than our theoretical values." They attribute this to possible

beam-foil cascade effects, so it is valuable to investigate the size, statistical sig-

nificance, and possible origins of any such trend. PINNINGTON et al. [3.99] have ex-

amined the ratios of experimental to theoretical mean-life values for beam-foil mea-

surements made in the University of Alberta Laboratory during the past four years.

Their results are presented in Table 3.1, along with a similar set of ratios obtained

Table 3.1 Ratio of beam-foil mean-life measurement to theoretical mean-life compu-

tation for two unselected samples. The uncertainties are the sample

standard deviations; sample size is given in parentheses

Source

PINNINGTON et al. [3.99]

(a) All values

(b) Highest ratio excluded

LAUGHLIN and DALGARNO [3.59]

(a) All values

(b) Highest ratio excluded

1.24 f 0.88 (47)

1.11 f 0.18 (46)

1.23 ?: 0.51 (24)

1.12 + 0.16 (23)

from the compilation of LAUGHLIN and DALGARNO. Although all ratios are in fact greater

than one, their values are within one standard deviation of that value. Further, most

of the individual ratios were within 10% of unity, with only a few cases (2 of 71) in

major disagreement. Therefore we must distinguish between two types of possible ex-

perimental errors: gross errors due to ambiguities in identifying mean lives (see
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Subsection 3.6.1), which are difficult to typify in quoted uncertainties, and small

errors, which are correctly typified by quoted uncertainties (usually 10%). In the

vast majority of beam-foil decay curves today the cascade mean lives can either be

resolved by a properly designed experiment, or else are too weak to affect the decay

curve significantly. While the total neglect of cascading would certainly overesti-

mate primary mean lives, there is no reason to believe that an exponential decomposi-

tion of a decay curve is more likely to undercorrect for cascading than to overcor-

rect for it. Thus, although cascading increases uncertainties, other sources of sys-

tematic error must be considered if the results in Table 3.1 constitute a meaningful

discrepancy. For example, beam-foil measurements do contain a selection bias, since

they can usually be performed only for strong transitions. Thus any theoretical ap-

proximation techniques which are especially applicable to strong transitions should

be closely examined, as should trends in lifetimes measured by techniques equally

applicable to strong and weak transitions. Also, DALGARNO [3.100]  has pointed out

that theoretical first-order l/Z extrapolations along isoelectronic sequences uniform-

ly underestimate mean lives, and gradient corrections have caused upward revisions

for the higher members of the sequences [3.101]. WEINHOLD [3.102]  and ANDERSON and

WEINHOLD [3.103] have suggested a technique for calculating upper and lower bounds

to theoretical transition probabilities, which, although generally very broad, could

provide a useful guide. Such estimates, together with critical evaluations of the

exciting mean-life measurements, could resolve the question of whether the small

trends in Table 3.1 have significance. However, it must be stressed that we can prob-

ably be 95% confident that a mean-life measurement obtained from the beam-foil method

in its modern form is reliable to within its statistical error or lo%,  whichever is

greater [3.99].

3.4 Time Dependence of the Measured Decay Curves

The mean-life determinations discussed in this chapter involve a measurement of the

time-dependence of the radiation emitted by a relaxing atomic level. The mean life

of the level is directly determined from this decay curve through analytical expres-

sions which will be developed in this section. These expressions are applicable not

only to beam-foil measurements, but also to decay curves generated under a wide vari-

ety of excitation conditions.

3.4.1 Solution of the Driven Coupled Linear Rate Equations

Most techniques for the direct measurement of atomic mean lives involve a study of

the time-dependence of the radiation emitted by a sample during or subsequent to an

external current density, Q(t), which generates the excitation. Usually, low densi-

ties are used so that collisional effects and radiation trapping within the sample



are negligible. In such cases, the instantaneous population N,(t) of a state or level

n is governed by the equation

dN,/dt  = cr,Q(t)  + 1 N.(t)Ajn  - N,(t)cl,
j J

, (3.11)

where on is the excitation cross section, A.
Jn

is the transition probability for a

cascade from the states or levels j, and an is the inverse mean life of the level n.

This equation has an integrating factor, exp(ont), which permits conversion to the

form

$ [N,(t) exP(a,,t)] = exp(a,,t) [o,Q(t) + i Nj(t)Ajn] . (3.12)

This differential equation can be changed to a convenient integral equation by inte-

grating both sides between the limits minus infinity (when it is assumed that none of

the excited states n is populated) and an arbitrary time t, shifting the integration

variable and exchanging orders of integration and summation to obtain

N,(t) = unLn(t) + 1 A.
j Jn

/

m dt' exp(-ant')Nj(t-t')  ,

n
where the quantity Li(t) is the Laplace Transform Convolution of the excitation stimu-

lus
m

Li(t) q
/

d t '  exp(-ait')Q(t-t')  , (3.14)

0

which has the very useful reduction property [3.104,105]

/
m dt' exp(-ajt')Li(t-t')  = [Li(t)-Lj(‘)I/(~j-“i) (3.15)

For izj,  R'H6pital's  rule yields -aLi/aai for the right-hand side of (3.15).

A relationship of the form of (3.13) holds for each state or level of the system, and

the simultaneous solution of the coupled differential equations of a given state with

those of its cascades can be performed to specify the instantaneous populations com-

pletely. The solution can conveniently be written in a closed-form series decomposi-

tion [3.104,105], in which the individual terms can be identified with cascades which

contribute to the primary state or level through a specific number of intermediate

states or levels. This series can be very neatly generated through an iterative pro-

cess. As a zeroth approximation we neglect all cascades in (3.13) and obtain Nn(O)(t)=

o&(t). We then use this result to make the first approximation, which neglects cas-

cades into cascades, and sets N.(O)(t) = ojLj(t) in (3.13). The integrals of Lj(t)
J

are easily reduced through the properties of (3.15), and we are ready to substitute

this first approximation into (3.13) to obtain a second approximation. This process



is repeated until cascading up to a desired order is included, thus generating an ex-

pression, which, containing linear terms in the Li(t) quantities as its only time-

dependence, can be written in the form

N,(t) = o,,L,,(t)  + 1 Cj+n) + E$ Ik+j+n) + # IR+k+j+n}
j

+ . . . + 1 . . . 1 Im+(r steps)+n) I (3.16a)

where the quantities in braces are diagrammatic symbols for the various functions

which are generic to cascades of a given order. One can show that [3.104,105]
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{j+n3 : ujAjn
!
& +

J n
(z
n J 1

Ik+j+n) : ukAkjAjn
L,(t)

o.-c1J n)("k-CLn) + * + (on-o$&Xk)]

L.(t)
Ia+k+j+n3  z aRARkAkjAjn

!(

L,(t)
+

oj-on)(ok-on)(Ua-on)  (ak-~j)("~-aj)(an-~j)

+
Lk(t’ L&t’

+
(a,-ak)(cln-ak,(cj-ak)  ( onmcl ~)(“j-“!J-)  (“k-“R’ 1

2 (3.16b)

which can be generalized to the form

{m+..(r  steps)..+n}  E o Am mb" .Ajn il, CLi(t)/j:i  (aj-cli)l  .

Here i and j range over the (r+l) cascade and primary states or levels and the product

of transition probabilities is over the r-step cascade chain. Equation (3.16a) can be

refactored into the form

N,(t) = C 8njLj(t’ )

j

(3.17)

where the sum includes one term for the primary level n, and one term for every level

which cascades, either directly or indirectly, into it.

In the following discussion, the variables are redefined in dimensionless form. For

the beam-foil source, the excitation may be considered an impulse Q(t) a 6(t), so if

we make the following replacements in (3.16)

Li(t) + exp(-ait)

oi+Ni(0) , (3.18)
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we obtain a specific expression for the population of any arbitrarily-cascaded beam-

foil-excited level.

Three-level examples in which there are two repopulating cascades are often used for

illustrative purposes, so we shall present them explicitly here.
I

For a primary level 0
labeled 1, repopulated by cascades from levels labeled 2 and 3, (3.16) and (3.17) d
yield a relationship n

z:
5'

N,(t) = [N1(0)-B,2-B,31  exp(-a,t)  + 13,~ exp(-cl2t) + B,~ exp(-c13t) (3.19) e. a
3
$

There are two possible schemes by which this can occur: k?
_::
2?-

Case 1 Direct cascades - both 2 and 3 have transitions to 1, but are not themselves -

repopulated

8,2 = N2(0)  A2,/bp2) ,

B,3 = N3(0) A3,/b,-a31 . (3.20)

Case 2 Indirect cascades - 3 cascades into 2, which cascades into 1

~3,~  = Pi263  + N3(0)A321(“3-~2)1A2,/(~,-~2)

B,3 = N3(0)A32A2,/[(~,-“3)(“2-“3)1  . (3.21)

As noted in Subsection 3.1.2, the indirect cascading case (with N,(O) = N2(0) = 0)

was first deduced by RUTHERFORD and SODDY in their study of radioactive decay and re-

covery curves. The implications of direct and indirect cascading will be contrasted

in Subsection 3.6.1.

The condition of (3.18) also describes the decay curves for all excitation sources

which have a finite shut-off time after which Q(t)=0 (for example, a pulsed beam-gas

source) provided t=O is interpreted to be after shut-off. Equation (3.16) can also

be applied to extract mean lives from driven excitation, with the only difference be-

ing that Li(t) becomes a more complicated function. For example, for a unit Gaussian

driving stimulus Q(t) = (h/&)exp(-h2t2),  the function becomes [3.104-1061

Li(t) = exp(-ait+ai2/4h2)  [l+erf(ht-ai/2h)]/2 . (3.22)

Similarly, the empirical shape of a measured excitation pulse Q(t) (the "prompt"

curve) can be numerically convoluted to form Li(t). which can then be inserted into
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(3.16). This generalizes to arbitrary cascading a technique used by LAWRENCE [3.107]

to extract short mean lives in pulsed-electron beam-gas excitation, and by HELMAN

[3.108] in the analysis of fast luminescence behavior. For a unit step function,

Li(t) is given by [3.104,1053

Li(t) = [l - exp(-ait)]/ai . (3.23)

Insertion of this relationship into (3.16) generalizes to arbitrary cascading the so-

lutions developed by ANKUDINOV et al. [3.109,110] to describe excitation of a beam by

a gas cell. This type of analysis is also extended in [3.104,105] to specify the

phase shift for a modulated beam-gas excitation source, with arbitrarily complicated

cascading included. Thus by evaluation of the single representative integral of

(3.14), a surprisingly simple description of nearly any atomic relaxation process is

given by (3.16).

3.4.2 A Quantitative Indicator of Level Repopulation - The Replenishment Ratio

Since cascade repopulation is a source of much concern in nearly all mean-life mea-

surements, it would be useful if a reported mean-life determination could be accom-

panied by some estimate of the degree to which cascading was present. A convenient

indicator is provided by the replenishment ratio [3.79], which is defined as the ratio

of the cascade repopulation rate to the decay depopulation rate. From (3.11) this

can be seen to be

R(t) = 1 N.(t)A[j J jn] ’ (Nn(tian] .
(3.24)

It is a positive quantity: R(t)<<1 implies there is little cascading; R(t)>1 indi-

cates a growing-in behavior. For an undriven case, Q(t)=O, and (3.11) can be written

-d(Rn N&/dt  = a,,[l-R(t)] , (3.25)

clearly exposing the fact that cc,, is the upper limit to the negative logarithmic de-

rivative of the decay curve (see subsection 3.6.1). In terms of the exponential sum

of (3.17) the initial value of the replenishment ratio is given by

R(0) = ~ (l-"j/cln)  Bnj/~ 'nk y

which is a convenient form for computation from curve fits.

(3.26)

3.4.3 Intensity Relationships for an Aligned Source

The intensity of radiation which is emitted into all 4~r steradians in a given spon-

taneous transition is proportional to the instantaneous population of the upper state



or level, as shown in (3.4). However, in practice, a detector samples the radiation
in only some limited solid angle, and has a sensitivity to the radiation's polariza-
tion. Thus, if the states are not equally populated, the differing angular patterns

of the polarized component radiation can cause the time-dependence of the sampled

line radiation and that of its corresponding level population to differ.

In the discussion of the relationship between component radiation and line radiation,

most authors (e.g., [3.53,p.97] and [3.56,p.443] assume "natural excitation", or equal

populations among the sublevels. This is a poor assumption for beam foil work, but

fortunately not a necessary one since all sublevels must have the same mean life.

Thus the line intensity emitted into all 4~r steradians

IyJ,y’J’ =  & i, NyJM  *yJM,y’J’M’ (3.27)

can be written as a product of the level population,

(3.28)

and the line transition probability,

A
yJ,y’J’ = k, *yJM,y’J’M’ ’ (3.29)

since the sum of component transition probabilities taken over lower states is inde-

pendent of the upper state. Thus (3.4) is valid for both lines and

radiation is included.

To describe a realistic experimental situation, let us consider the

radiated intensities AI’ and AIL detected at an angle 8 to the beam

polarizers set parallel and perpendicular to the beam-photon plane.

can be written in terms of the Zeeman components AM=0 and AM=?1 as

AI” = qx’  i PJyJM[AyJM,y~J~M  (2-3cos'o)  + AyJ,ylJl(cos2e)]

AIL = nxL 1 NM yJM  yJ,y’J’  - yJM,y’J’M’[A A ’

components if all

electric dipole

through linear

These intensities

(3.30a)

(3.30b)

where nh' and nxL are the detection efficiencies at the wavelength X. Sum rules were

used to write the AM=+1 components in terms of the line and AM=0 A-values. The AM=0

A-value has the useful property

(3.31)
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from which one can easily recover AI' = AI’ for the natural excitation case, in which

NyJr,l
= NyJ/(2J+1). Thus the total radiation detected in a standard beam-foil arrange-

ment at e=90" is given by the sum of (3.30a)  and (3.30b)

(3.32)

Thus, unless rlxA  = 2nA', the intensity is not proportional to the total level popu-

lation, but rather to a weighted sum of the sublevel populations.

Since all states of a level have the same mean life, the same mean lives will be con-

tained in all component decay curves of a line. However, due to differences in sub-

level populations, the admixtures of exponentials in the various components may dif-

fer, and the admixture of (3.32) will in general not correspond to that of the total

radiation of any component, or to that of the line. This fact has implications which

we shall discuss in the next subsection and in succeeding sections.

3.4.4 Distortions Which Preserve the Mean-Life Content of a Decay Curve

In Subsection 3.3.2 methods were described which can eliminate instrumental effects

which could distort the decay curves from their multiexponential form. There are

other classes of distortions inherent in all decay-curve measurements which do not

affect the mean-life content of the curve, but do alter the admixture of exponentials.

These distortions are important to consider, for although some analysis techniques

(see Section 3.5) are sensitive only to the individual exponential components, others

(see Section 3.6) rely on the detailed shape of the decay curve. It is possible to

estimate the magnitude of these distortions and correct for them, as well as to ad-

just experimental conditions so as to eliminate them.

a) Finite Time Window The measured data are instrumentally integrated over some

finite resolution time t. For a beam-foil source, this corresponds to the beam seg-

ment viewed by the optical system divided by the beam velocity; for a delayed coinci-

dence measurement, it is the channel width (for a beam-foil source, At can be less

than the channel width AT, which is the step size). The average value of the popula-

tion over this interval is

N,(t) =J t+At'2  dt' N,(t')/At  .
t-At/2

Using (3.17) and (3.18) this becomes [3.111]

(3.33)

N,rtr = 1 6nj[sinh($jAt)/($jAt)] exP(-ojt) .
j

(3.34)
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The admixture 0.f exponentials is altered if the resolution width approaches any of

the contributing mean lives.

b) Finite Solid Angle If the source is aligned, the intensity AI which enters a

solid angle at 90" to the beam direction is given by (3.32). If we insert (3.17)

and (3.18) we obtain

‘I = 5 [ & B(yJt4)j [
(4 - ‘I~~)A~JM  y~Jew + qhLAyJ yoJ1]] exP(-ajt) , (3.35), ,

so, unless every B is independent of M, we again have an exponential admixture which

is different from that describing the level population [3.1,12].  Since the coefficient

in braces involves the transition probabilities, the admixture can differ among the

various branches of the decay, due to differing angular distributions of the same to-

tal intensity. This dependence can be eliminated by forcing nxL + 2nh'. This can

be achieved by measuring each decay curve both in parallel and in perpendicular polar-

ized light, correcting for the instrumental polarizations, and forming AI’/r;,”  +

2AI3’. The same result can be attained by viewing the source through a linear

polarizer with its axis inclined at the "magic angle" cos-'(l/a)  = 54.7" to the

beam-photon plane [3.113]. The polarizer will then pass l/3 of the parallel and 2/3

of the perpendicularly-polarized light, which gives the desired result for a detection

system which has no instrumental polarization. Instrumental polarization can be re-

duced to less than 1% by use of a polarization scrambler, which creates pseudo-de-

polarized light after polarization analysis [3.114].

With both polarizations viewed at an angle 0 to the beam direction by a detection

system with no instrumental polarization, we obtain, adding (3.30a) to (3.30b),  with
I I

nh = 'lhL, and the substitution of (3.17) and (3.18),

'I = $ [i B(rJM)j AyJM,y'J'M (1-3~0~~8)  + AvJ y,J,(l+cos20)]]exp(-ojt) . (3.36)3

Thus even without instrumental polarization, the geometrical detection efficiencies

cause the admixture to differ from that of N,(t) in a manner dependent upon alignment,

branch, and angle. An exception occurs if the radiation is viewed at the "magic an-

gle" to the beam, defined as above to be eM = 54.7", for which the component transi-

tion probability drops out and the M sum over B becomes unweighted.

It should be emphasized that the distortions discussed above change only the admixture

of the exponentials, and not the exponential mean lives themselves. Thus an analysis

which simply fits exponentials will not be affected by these distortions, but they

must be considered in more sophisticated techniques which utilize cascade relation-

ships between jointly-analyzed decay curves.
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3.5 Mean-Life Extraction by Exponential Fits to Individual Decay Curves

The customary method for determining mean lives consists of approximating the decay

curve of the desired level through the adjustment of the Cj and oj parameters in the

fitting function f

7 : 1 C. exp(-ojt)
j J

. (3.37

As we have seen, an atomic decay curve is usually a multiexponential sum with a very

large number of terms. However, in practice it is often sufficient to include only

one or two cascade exponentials to obtain a good approximation of the primary mean

life. The cascade mean lives obtained in such a fit should be considered averaged

effective values, which do not necessarily correspond to any specific level. However,

experiences with detailed cascade analyses (see section 3.6) have shown that there are

cases in which one or two cascades completely dominate the repopulation, and are re-

liably recoverable from the decay-curve fit.

Nearly any analysis of exponential mean lives begins with a graphical plot on semilog

paper, with the mean-life components resolved by repeated subtraction of straight

lines. This curve-peeling approach can in some cases yield reliable results, but its

limitations in accuracy due to cumulative error buildup should be apparent. However,

the graphical method is still commonly used to obtain reasonable starting values for

the computer programs which will be described here.

3.5.1 Maximum Likelihood Method

The maximum likelihood method utilizes the likelihood function L [3.115] defined as

N
LZ  II [ T(C1,C*,...a1,“2,...ti)//  &t 7I ,

i=l
(3.38)

where r is defined in (3.37), the product is over i individual counts, each registered

at a time t i, and the integration extends over the entire measurable time window. The

fit is accomplished by varying the parameters in such a way as to maximize L. Since

the equations are non-linear, this requires a brute-force search. Computer programs

have been developed which achieve maximization by the MALIK [3.116] stepping procedure,

as well as by an alternative iteration procedure [3.117]. Provisions have been made

to accept grouped multichannel data by correcting for the fact that the decay shifts

the count centroid away from the channel centroid [3.118-1201. A modification has

also been suggested [3.121] in which (3.37) is rewritten in terms of an alternative

parametrization Cj + Cljclj. The correlation between Clj and clj is weaker than between

Cj and aj, which speeds the convergence. Use of these maximum-likelihood programs has

been limited to one or two exponentials with constant background terms.
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3.5.2 Non-Linear Least Squares Method

The most frequently-used technique is the method of least squares, which involves a

minimization of the quantity [3.122]

s2 = c [1(t) - T (C,,c2,...",,02,...ti)12  w
i i * (3.39)

Here I(ti) is the number of counts in channel i, ti is the time centroid of channel
i, r is the fitting function of (3.37), Wi is the uncertainty weight in the measure-

ment of I(ti), and i is summed over channels. Minimization of S2 is equivalent to

maximization of L if the measured values are gaussian distributed about the parent

distribution. For Poisson statistics, the best fit is not obtained by minimizing this

mean square deviation from the mean since the Poisson distribution is always skewed

below the mean, particularly so for counts less than around 100. Thus it is sometimes

desirable to pool several channels on the decay curve tails in making this analysis.

Again, since (3.37) is not linear in the oj parameters, neither L nor S2 can be opti-

mized by analytical differentiation and inversion (unless only a single exponential

contributes, in which case the logarithmic intensities can be linearly fitted). Thus

minimization must be achieved through numerical search methods, such as the method of

steepest descent or the Gauss-Seidel linearization (Taylor Series). Since each of

these techniques has a characteristic efficiency which depends upon the proximity to

minimization, they are often combined through a scheme such as Marquardt's Algorithm

[3.123] (the maximum-neighborhood method). If a true minimum is achieved, the result-

ing fitting parameters are independent of how the minimum was located and various pro-

grams should differ only in the time and number of iterations required for convergence.

Weighted non-linear least-squares fitting programs are contained in the systems li-

braries of most large computer installations (e.g., [3.124-126]), and most packages

already include an exponential sum as an optional function. Special programs of this

type have also been developed specifically for use in mean-life data reduction (e.g.,

[3.127,128]). The amount of programming required is substantial, and most laborator-

ies adapt an existing library program.

Although the fits should be independent of the specific search program, they are often

quite sensitive to the weights chosen. For convenience, the weights are based on the

measured data rather than the parent distribution and include a number of different

sources of uncertainty. Since a decay curve begins with a high number of counts and

often ends when the signal becomes comparable with fluctuations in the background, the

local accuracies over tl;e decay cutve -,re  expected to vary greatly. Statistical fluc-

tuations are often not sufficient to account for the observed spread of data points,

particularly in the high count region, where statistical inaccuracies may be only

O.l%, and non-statistical errors must be considered. A possible weighting which in-

cludes an incoherent sum of statistical and non-statistical errors is given by
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(3.40)

Here E is a small number, chosen so that (Wi)-"* .will  match the spread of data points

for large I(ti) while contributing a negligible amount for small I(ti), and Bi denotes

any measured backgrounds which have been pre-subtracted to give I(ti). (The back-

ground may arise from several separate Poisson-distributed contributions, since such

a merger is also Poisson-distributed with a mean equal to the sum of the separate

means). If the fit is found to be sensitive to E, a detailed study of non-statistical

errors is necessary. In a modern beam-foil measurement, such as was described in sub-

section 3.3, non-statistical errors have largely been removed and statistical weights

are usually sufficient. If weights are correctly chosen and properly normalized, the

sample variance can be compared with that of a parent gaussian distribution of the

same number of degrees of freedom (the number of data points minus the number of fit-

ting parameters) by the x2 test [3.122]. The number of exponential terms which must

be included for an adequate but not overparameterized fit can be selected by comparing

the values of S* for various inclusions with a table of corresponding x2 probabilities

[3.122]. The uncertainties in the individual parameters (for either the least-squares

or maximum-likelihood methods) can be estimated by examining x2 as a function of each

parameter in the neighborhood of the minimum.

It is seldom that beam-foil decay curves can be fitted to more than three exponentials

(six free parameters). One limitation is imposed by the finite time-window (as shown

in Fig.3.1, it is difficult to resolve times shorter than 0.05 ns or longer than 100

ns within a standard beam-foil chamber). Thus, only under unlikely circumstances

could four exponential mean lives all differ from each other by at least an order of

magnitude, and thus have a region of dominance within the measured decay curve. In

pulsed beam-gas excitation, it is possible to vary the duty cycle and examine the de-

cay curve in various time domains [3.16], but even here it is difficult to extract

the same four exponentials from two separate but equivalent measurements of a decay

curve. LANCZOS [3.129] has studied the numerical implications of the exceedingly

non-orthogonal properties of the exponential functions, and has noted extraordinary

sensitivity of the fitted parameters to small changes in the data. This causes dif-

ficulties in applications to physical problems, where the aim of the fits is not

merely to approximate the data closely by a mathematical function, but to determine

accurately the physically meaningful parameters. LANCZOS estimates that to fit four

or five exponentials would require measurement accuracies of from 6 to 8 significant

figures, which is quite unrealistic when compared to actual measurement accuracies.

However, in normal mean-life determinations, the situation is not as hopeless as this

analysis would imply, since we desire accuracy in only one fitted parameter, the pri-

mary level's mean life. If this mean life dominates the decay curve, the fact that

nonphysical values are recovered for the other parameters is not serious. The LANCZOS
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caveat must certainly be heeded in attempts to extract cascade mean lives or relative

initial populations from decay-curve fits.

The knowledge that the decay curve is a sum of exponentials, which have special ana-

lytical properties, is not incorporated into the basic fitting process. It is pos-

sible to utilize these properties, either in conjunction with a traditional fit, or

in alternative fitting procedures, and partially counteract the disadvantages of non-

orthogonality.

3.5.3 Differentiation and Integration of Decay Curves

One aspect of the exponential function which is not contained in the basic fitting

procedure but which can sometimes increase the reliability of a fit involves its very

simple properties under differentiation and integration. The derivative of (3.37)

is

while its integral from to to infinity is
co

/
dt’T(t’) = 1 (Cj/aj)  exp(-ojt) .

t j

(3.41)

(3.42)

Therefore the differentiated and integrated decay curves should contain the same mean

lives, but with coefficients which differ in a predictable way. This can be coupled

with the fact that the early and the late portions of a decay curve are usually quite

different in information content. The early portions contain short-lived exponentials

and have high statistical accuracy, while the late portions contain long-lived expo-

nentials and have low statistical accuracy. If the early portion possesses sufficient

statistical accuracy to permit numerical differentiation [3.130],  the process will

further enhance the short-lived components and eliminate entirely the necessity for a

constant background subtraction. Similarly, if the late portion can be integrated

(this requires an accurate background subtraction and an extrapolation of the inte-

gration beyond the end of the decay curve, which can be done iteratively [3.5O,p.28])

the long-lived exponentials will be further enhanced, and the integration will reduce

the statistical fluctuations. The fitting procedure can be performed three times:

once for the raw decay curve, once for the early portion of the differentiated curve,

and once for the late portion of the integrated decay curve. An example [3.131] is

shown in Fig.3.3. Agreement among the coefficients and mean lives in the various

fits indicates the exponential content has been correctly described, and disagreement

can indicate that an inappropriate number of exponential terms was used.
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Fig.3.3 Curve fits to a measured decay curve (central figure) and its numerical

integral (top figure) and derivative (bottom figure) for the 4s 4P level

in P I. All fits contain the same exponential lifetimes, but the admix-

tures vary in proportion to the relative lifetimes

3.5.4 Expansion About a Close-Lying Mean Life

In some cases, beam-foil decay curves appear to

question then arises of whether they really are

sum of close-lying values. As we shall show in

be relatively free of cascades. The

cascade-free, or merely an effective

Subsection 3.6.1, there are situations

in which this question is virtually impossible to answer. However, there are fitting

techniques which are especially sensitive to small lifetime differences which can be

used in such cases. As was pointed out by DENIS et al. [3.132-J,  if (3.16) is Taylor-

expanded about aj = cl,, + Aa for a contribution from a single direct cascade j, the

equation becomes
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N,(t)  = exp(-ant)  [Nn

and a polynomial linear f

(0) + Nj(0)Ajn(t-A&Z)  + . ..] (3.43)

it to the quantity Inf(t) exp(a,,t)  (using the value on from

a single exponential fit) can very sensitively expose small differences in mean life.

ERMAN [3.16] has studied the problem in the context of pulsed-electron beam-gas ex-

citation and has concluded that (barring the unlikely situations described in Subsec-

tion 3.6.1) it can introduce at worst a few percent error. If the cascade lifetime

differed from the primary by more than this amount, the decay data would exhibit mea-

surable curvature. If the lifetimes differed by less, the fitted value would be be-

tween the primary and cascade mean lives.

3.5.5 Fourier-Transform Methods

An alternative procedure has been developed by GARDNER et al. [3.133] in which the

exponential sum over a discret set of mean lives is re-expressed as a Laplace inte-

gral over a continuous set of mean lives

I(t) = i Cj exp(-ojt)  +/ mdcl g(o) exp(-at)  , (3.44a)
0

where

g(a) q 1 C.S(Wcxj)
j J

) (3.44b)

and the function g(a) takes the form of a frequency spectrum with peaks of height Cj

centered on the values oj. Here g(cr)  can be computed through the inversion of this

integral equation, and since g(o) has entirely different properties from I(t), this

approach may avoid some of the problems created by the non-orthogonality of the ex-

ponential sum. Since inverse Laplace transform calculations for empirical functions

present practical problems [3.108], a method of inversion using Fourier transforms

was employed [3.133], which has been extended to permit the use of modern Fast Fourier

Transform Algorithms [3.134] by SCHLESINGER [3.135]. Unfortunately this method re-

quires the observation of all decays for many mean lives, and is seriously limited

when more restricted ranges must be used. Another disadvantage is that the uncertain-

ties in the parameters are difficult to estimate. The technique has not generally

been applied to atomic mean-life work, but at the least it could provide useful start-

ing values for an exponential search program.

3.5.6 Method of Moments

Another technique which transforms exponential data into an alternative form has been

developed by BAY [3.136,137] and extended to include several exponentials by DYSON

and ISENBERG [3.138], ISENBERG and DYSON [3.139], and SCHUYLER and ISENBERG [3.140].

Moments of the decay curve are numerically computed over the range of measured data
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(3.45)

where k runs from 0 to one less than twice the number of exponentials in the fitting

function (so as to match the number of parameters). The fitting function (3.37) is
also integrated and becomes (corrected for truncation)

q (C1,C2,...,+a2,...k) = $ Cj [k!/ajk+'  -

and a least-squares fit is made to the moments

IT- dt tk exp(-ajt)] , (3.46)

S2 = 1 [uk - q (C1,C2,...01,02,...k)]2
k

(3.47)

The infinite integrals in the fitting function can be generated recursively, but this
correction usually contributes only a small perturbation in the fit. In order to in-
tegrate the data reliably, a special numerical filter was developed [3.138-1401 to

remove the high-frequency noise components. The technique has been successfully used

to analyze simulated three-component decay curves, and an extensive review of the

method and its application to biological systems is given by YGUERABIDE [3.141].

3.6 Mean-Life Extraction by Joint Analysis of Cascade-Related Decay Curves

In the previous section, analysis techniques were discussed by which mean lives are

extracted from individual decay curves. These methods are in general highly reliable

and provide a conclusive determination in most cases. However, there are a few situ-

ations in which the extraction is either particularly difficult, or for which there

is an ambiguity in the assignment of the fitted mean lives. In such cases, it is

possible to utilize additional conditions between cascade-related decay curves to

sharpen the determination and to remove the ambiguities. We shall therefore discuss

a few of the most difficult possible situations, and describe the techniques by which

even these examoles become tractable.

3.6.1 Ambiguities in the Assignment of Fitted Mean Lives

It is known [3.142] that substitution of certain combinations of decay rates and ini-

tial populations into (3.16) will remove the exponential term corresponding to the

primary mean life. For example, if N3(0):N2(O):N1(0)  = 5:3:1 and a3:02:01  = 3:8:27

(unbranched) then (3.21) yields B12 = 0 and B13 = N,(O) and a single exponential re-

sults, although three different mean lives are involved. We mention this to show

that a single exponential does not necessarily preclude cascades nor unambiguously

determine mean lives.
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The primary mean life can be extracted even if it is not among the fitted exponentials.

This mean life may not be exhibited explicitly as an exponential, but it is nonethe-

less manifested implicitly through the relative coefficients of the cascade and pri-

mary admixtures, if both decay curves are measured. The decay curve Nl(t), containing

only the exponentials present in its direct cascade, and presenting a less drastic

example which clearly illustrates the above point, is shown in Fig.3.4.

n Nn(O) zn
3 5 6

2 6 2

1 5 1

N3(t) = 5_@

N&t) = 7 ,-t/2-_
2

+  Z.-t/6
2e

N,(t) = -0_p +  $-$/2 +  $_$/6

Fig.3.4 Example of an indirectly-cascaded level with a decay curve which does not

involve the lifetime of that level. Although that lifetime does not appear

as an exponential in any of the decay curves, it can be extracted from a

comparison of the admixtures

In such a two-level example, the differential equation,

dN,/dt  = N2(t)A21 - Nl(t)ol  9 (3.48)

couples the solutions of (3.17) and (3.18) to yield the relationship

822 Y-o2 52_=--
823 "l-o3  63 ’

(3.49)

and o1 can be evaluated from the ratios of the coefficients and the cascade mean lives.

Such implicit information can be utilized to analyze a wider class of situations in

which the primary exponential term, although not fortuitously zero, is small, due

either to heavy cascading or to a short mean life. Generalized techniques to extract
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mean lives from cascade-coupled sets of decay curves will be described in the follow-

ing subsections.

A frequently-cited example in which ambiguities in the assignment of mean lives occur

is the "growing-in" decay curve. In this situation, one or more of the exponential

coefficients is negative, and a maximum may occur in the decay curve or in one of its

derivatives. If we examine the possibilities for such an occurrence in the absence

of indirect cascades, (3.19) and (3.20) admit two possibilities: a short-lived pri-

mary level of low initial population, or a cascade level which is shorter-lived than

the primary. Selection between these possibilities is called the direct cascade

"growing-in ambiguity". Unfortunately, such ambiguities are not restricted to grow-

ing-in decay curves.

If a level were repopulated only by direct cascades, it would follow from the above

that the primary mean life would be equal to or shorter than the shortest fitted mean

life which has a positive coefficient. Thus in the absence of growings-in, the pri-

mary would always be the fastest contributor. Although this has been found generally

to be the case, it is not a rigorously valid condition if indirect cascading is pres-

ent. An example is given in Fig.3.5 of an indirect cascade scheme in which the pri-

mary level is of intermediate mean life, but exhibits no growing-in.

n Nn zniii!? 2 3 I 0 7 5 2 9 I

N3(t) =

N*(t) =

7.$/l

63 ,t/9 _ 63 -t/l-_
8

-_
8e

N,(t) = , _p + %,-t/9 + 1 ,-t/1
4 4- 1

Fig.3.5 An example of a decay curve in which a cascade is the fastest contributing

lifetime, but no negative "growing-in" coefficients are exhibited



96

Again, the ambiguity can be resolved if the cascade decay curves are also measured.

Despite this counter-example to the "fastest non-growing-in" argument, it is still

possible to establish a rigorous upper limit to the level mean life by examination

of the logarithmic derivative of the decay curve. Since the replenishment ratio can-

not be negative, (3.25) implies that

-d(Rn Nn)/dt  I; an . (3.50)

KAY L3.1431 has shown that this inequality is valid, regardless of cascading condi-

tions, instrumental time-resolution, detection efficiency, data-point  spacing,  or
velocity-dispersion effects. Although the situations described above may seem formid-
able, they are handled rather easily, if the decay curves of the cascade levels are

also accessible to measurement, by techniques which are described in the subsections
to follow.

3.6.2 Constrained Fits

One technique for incorporating measured cascade information into the analysis is the

constrained fit. The decay curves of contributing cascades are measured and fitted by

non-linear least-squares methods. Decay constants from the strongest lines observed

in the cascades are then forced into the fitting function of the primary decay-curve

least-squares fit, but the cascade mean-life values are fixed and only their coeffi-

cients are allowed to vary freely in the fit. Since these coefficients are linear

parameters in the fit, they do not display the non-orthogonal behavior of the mean-

life fits, and their use can account for a higher complexity of cascading than would

otherwise be possible. MARTINSON et al. [3.144] have used this technique to fix up

to five cascade mean lives in Be I decay curves. TIELERT and BUKOW [3.145] have de-

veloped a technique which minimizes the joint x2 for two measured decay curves which

contain common mean lives, and have thus analyzed hydrogen decay curves including the

effects of five mean lives, only one of which was free to vary. Although their anal-

ysis was primarily intended to determine the coefficients for population determina-

tions, it recovered a highly reliable value for the free mean life.

3.6.3 Linearly-Fitted Normalizations of Cascade-Related Decay Curves

The constrained-fit methods described above use only the information that cascade ex-

ponentials are also contained in-the primary decay curve, and ignore the relationships

among the coefficients of the various admixtures which are imposed by the population

equations, such as (3.49). This does have certain advantages, since mean lives are

independent of excitation conditions and coefficients are not, so decay curves mea-

sured under quite different circumstances can be combined by a constrained fit. How-

ever, if we impose the additional condition that the primary level and all of its sig-

nificant cascade levels are observed under equivalent excitation conditions, then

their populations are coupled by the differential equation
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(3.51)

If the decay curves are measured under circumstances such that they are free of all

types of distortions including those discussed in Subsection 3.4.4, and are corrected

to remove all background and blend contributions, then the decay intensity Ik(t) (ob-

served in any decay branch) is proportional to the instantaneous population of the

decaying level k

I&t) = Nk(t)/S;, I (3.52)

where c;( is a constant which depends upon the detection efficiency, the transition

probability of the branch observed, the data-accumulation period, the slit width, etc.

Thus the various Ik(t)  are Arbitrarily-Normalized Decay Curves (ANDC) and Sk = <;/<A

is the undetermined parameter which normalizes the j th cascade relative to the pri-

mary. If all ANDC are measured with a common time base and initialization, (3.51)

becomes [3.146]

dI,,/dt  = 1 <.1.(t)  - onIn
j JJ

, (3.53)

which represents a separate linear relationship connecting an and the various cj for

each instant of time, with coefficients obtainable directly from the measured ANDC.

Here the empirical decay curves themselves, rather than their approximate mathemati-

cal representations, are the fitting functions, and cascade mean lives occur only im-

plicitly and are not determined. Equation (3.53) provides as many independent linear

relationships as there are data channels which can be satisfied simultaneously by a

standard multiple linear regression [3.122], which analytically minimizes S 2 in

S2 = >: (yi - 1 a x .)2 .
i k kki

(3.54)

There is a choice in the possible definitions of the variables yi and xki, which can

provide alternative approaches, depending upon the accuracy of the data. If the sta-

tistical accuracy is sufficient to permit a numerical differentiation of the primary

decay-curve, the variables may be defined directly from (3.53) as

yi = dq in(ti) , xki = fi Ik(ti), k = nVj19j2V... y (3.55)

where I .th
n = dIn/dt, ti is the time coordinate of the I channel, and Wi is the weight

factor (this definition allows the use of general-purpose multiple-regression subrou-

tines, which often are not designed to accept data of explicitly varying weight).

Sophisticated numerical differentiation formulae often smooth over many data points,

which is neither necessary nor desirable when it is followed by least-squares fitting.

Thus a crude but adequate three-point differentiation formula for quasi-exponential
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data of equal spacing AT is given by

I(t) = I(t) !Ln[I(t+AT)/I(t-AT )ll(*AT)  . (3.56

If we assume uncorrelated statistical errors (neglecting the error correlation between

In and I,), a satisfactory weight-factor is given by

wi = [(AT-* + a2no )ln(ti) + f ~~0  lj(ti)l-’ , (3.57)

where a and 5. are estimated values of a,, and Sj. not varied in the fit, but iter-

ated ifn~ncorre~~ly  estimated [3.147].

If the data cannot reliably be differentiated, an alternative formulation has been

suggested and utilized by KOHL [3.148],  CURTIS et al. [3.149], KOHL et al. [3.150],

and SCHECTMAN et al. [3.151],  in which both sides of (3.53) are integrated between

arbitrary limits TI and TF, and the variables of (3.54) become

yi : 45 CIn(TF)  - In( TF3

This formulation has the disadvantage that it combines several data points in the in-

tegration, so that the number of degrees-of-freedom is not inferred directly by the

number of data points, complicating the interpretation of goodness-of-fit criteria and

dt I&t)  . (3.58)

the definition of weight factors. However, the problems of numerical differentiation

can be severe, and this integration approach provides an effective means of pooling

data without degrading the time-resolution of the decay-curve.

In either formulation, the number of independent relationships must greatly exceed the

number of cascades for any analyzable case. Thus the applicability of this method to

a given set of measurements is indicated by the goodness of the fit obtained. If one

or more significant cascade decay-curves has been neglected, the analysis should pro-

duce a poor fit. Contrarily, if a given cascade is neglected and a satisfactory fit

can be obtained, then its contribution to the repopulation is probably small. There

are a number of ways to test the goodness-of-fit. One involves reciprocity of the fit

under interchange of the role of the independent variables in the fit. In our formu-

lation, we have chosen yi as the axis along which deviations are minimized. If one

of the other variables assumes this role, the minimization process is altered, but the

values inferred for cl,, and the si should be the same to within fit variances if the

decay curves are truly correlated. The x2 test also gives a measure of goodness-of-

fit, provided the weights chosen accurately reflect the uncertainties in the measure-

ment. With appropriate weights, the regression also provides an estimate of the un-

certainties in cln and sj.



99

The goodness-of-fit can be displayed on a graphical plot if the number of parameters

can be reduced to two. As an example, consider a level 1 which has cascades from

levels 2 and 3. Equation (3.53) becomes

dI,/dt  = c,I,(t) + S313(t)  - “,I, (t) . (3.59)

If the ratio e = c3/c2 can be determined, either empirically or by a prior multipara-

meter regression, this equation can be rewritten for the i th channel as

[-d(!LnI,)ldt]  = o., - S2[(12+eI3)/Illi . (3.60)

Thus a plot of one bracketed quantity vs. the other will yield a1 and 5, as an inter-

cept and a slope, respectively, about which the scatter of points is an obvious good-

ness-of-fit indicator. An example of this is shown in Fig.3.6 for the 40 2P level in

-$“I

.2 .4 .6 .8
( I,+eI,VI,

Fig.3.6 Plot of the negative logarithmic derivative of the primary level vs. the ad-

justed sum of its cascade decay curves for the 4p 2P level in Ca II. These

quantities are linearly related, so the ordinate intercept gives a
4P

and the

slope gives the relative normalization of the cascades to the primary

Ca II. The decay curve of 4p 'P was heavily repopulated by fast cascades from 5s

and 4d 2D which gave it a strong growing-in shape.
2S

This greatly hampered accurate
curve fitting and could have allowed ambiguities in the assignment of mean lives if



the cascade decay-curves had not also been measured. A three-parameter regression of

the three measured decay-curves was made with (3.59) which yielded values of o, =

0.168, 52 = 0.86 and 5, = 0.43. The bracketed quantities in (3.60) were then computed

with e set at 0.50, and the goodness-of-fit is clear from the plot.

This method employs exact linear relationships to incorporate cascade decay-curves

into the analysis of the primary decay-curve, does not involve exponential curve-fit-

ting, and provides self-consistency checks of its validity. The method utilizes the

same decay-curves as standard curve-fitting techniques, so is an additional rather

than an alternative approach, which can be very useful in resolving possible ambigu-

ities and extracting mean lives in troublesome cases.

3.7 Cascade-Free Methods

Several methods have been developed which can, in certain circumstances, completely

eliminate cascade effects from fast ion-beam mean-life measurements.

3.7.1 Beam-Foil Coincidence Techniques

Although photon-photon coincidence techniques have provided a method for making cas-
cade-free mean-life measurements in nuclear physics and in electron-beam excited-atom

studies, low light-levels make its application very difficult in the beam-foil case.

However, this technique has been used successfully by MASTERSON and STONER [3.152] to

measure one mean life for which a single cascade dominates. In their experiment, the

true coincidence rate was only about l/40 of the chance coincidence rate, but they

were able to subtract the chance coincidences by use of a single-channel approach

(a multichannel analyzer recorded both the fixed-delay-window peak and surrounding

background, permitting an estimation of the background under the peak). In order to

obtain a signal 3 times the statistical fluctuations in the chance coincidences, about

(3x40)* = 14400 total coincidences were required per channel, the accumulation of

which took approximately 40 hours per point, or 10 days of running time for a 6-point

decay curve. Although these times indicate the great difficulties inherent in such

a measurement, the results clearly demonstrate that the measurement is possible. The

method has a unique advantage in that it can establish a correlation between the cas-

cade and primary transitions, and can therefore be used to verify level schemes.

3.7.2 Use of Alignment to Discriminate Against Cascades

It is well known that beam-foil excitation often produces alignment in substate  popu-

lations, which (as shown in Subsection 3.4.3) gives rise to linear polarization of

the radiation emitted into limited solid angles. For a given level, the population

consists of two incoherent non-interacting portions: (a) the "remnant" of the initial
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foil excitation, and (b) the "repopulation" added by cascades. Since the sublevels

all decay with the same mean life, the remnant retains its initial alignment, while

the repopulation contains whatever alignment it transfers from the higher-lying states

(which in general is reduced by the AM = 0,&l  selection rules). NEDELEC [3.153]  has

obtained general expressions for the transfer of alignment by cascades, which indicate

that it is in most cases small. Let us therefore consider a case in which cascade-

induced alignment is negligible, either because the cascade levels are not aligned,

or because their alignment is not efficiently transferred. In this case (3.17) and
(3.18) for the sublevels can be written as

NyJpl(t) = [NyJM(0)  - [ ~~1 exp(-ayJt)  + f ~~ exp(-akt) , (3.61)

where k is summed over the cascades, and since the cascade contributions to all sub-

levels of the primary level are the same, the Bk are M-independent. This expression

suggests an analysis technique which can be understood by consideration of (3.30a) and

(3.30b). If the light is viewed at 8=90" through parallel and perpendicular polar-

izers, the results being corrected for instrumental polarization, the difference in

intensities yields

AI” /T/ - AIL/q1  = 1 N
M YJM (t)[3AyJM  yeJlM  - AyJ v’j’I . (3.62)2

Substituting in (3.61) and using the sum rule of (3.31), we find that the k terms van-

ish, leaving the expression

AI” /q” - AIl/qL =
I
i N,,J,,&~)[~~~J~,~‘J’M  - AyJ,y’J’I  ] exp(-ayJt) y (3.63)

so the difference between the two multiexponential decay curves should be a single

exponential with the mean life of the primary level. This approach has been used by

BERRY et al. [3.154]. After subtracting the unpolarized background and correcting for

instrumental polarizations (which were made small by use of a scrambler) the two mul-

tiexponential polarization decay-curves of the Li II 47878 transition (indicated by

hollow circles) were subtracted to give a single exponential curve (shown by solid

circles). Although the polarization was small, tolerable accuracies in the subtracted

differences were achieved by keeping statistical uncertainties in the measured decay

curves below 1%. They also used this technique to remove blending effects in hydro-

genie decay curves. The S-state portions, being unpolarized, cancelled on subtraction,

and higher angular momentum state polarizations showed an energy dependence. Thus

for the He II 3-5 transition the 5f mean life dominated the subtracted decay curve at
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300 keV,  while the 5p mean life dominated at 1.5 MeV. For BERRY et al.'s results,

see Fig.3.7.
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Fig.3.7 Decay curves for the Li II 3p 'P - 4d 'D transition measured in polariza-

tions parallel (upper())  and perpendicular (lower0)  to the beam axis and

their subtracted difference (O), multiplied by 10 for common (arbitrary)

normalization. The lower part of the figure (& shows the change of

polarization as the cascading fraction increases

An automated system for measuring (3.63) directly, coupling rotating polarization

analyzers to a phase-sensitive detector, has been used by SCHECTMAN [3.155],  which

may make this specialized technique more generally applicable. A similar technique,

utilizing the lack of cascade-induced alignment to suppress cascade effects in the

beam-foil Hanle effect has been utilized by LIU and CHURCH [3.156] and CHURCH and LIU

[3.157].

3.7.3 Laser Excitation

One of the most promising new techniques which has been used for mean-life measure-

ments is selective excitation of a fast ion beam in flight by an intersecting laser

beam. This technique provides cascade-free decay curves, and shares with beam-foil
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excitation its high isotopic purity and low particle density, while avoiding the prob-

lems of beam energy spread due to losses in the foil. The first experiment of this

type was performed by ANDRA et al. [3.158,159] who Doppler-tuned an argon-ion laser

through 9A by variation of the intersection angle between the beams, which then cor-

responded to a Ba II resonance transition. This technique can routinely yield mean

lives good to better than l%, and is being extended through the use of tunable dye

lasers and beam excitation within a laser cavity. However, in this form, the tech-

nique cannot be applied to levels which are not optically excitable from the ground

state, and does not have the access to highly ionized and multiply-excited states of

a beam-foil source.

Some of the limitations of this method can be eliminated by a variation developed by

HARDE and GUTHOHRLEIN  [3.160],  in which the ion beam is pre-excited in a gas cell,

(or foil) before receiving further excitation from a continuous-wave intracavity dye

laser, which is chopped at 82 Hz. Although the total emitted intensity is not cas-

cade-independent, the difference between the chopped decay curves, measured with a

digital lock-in photon counting system, is, and decays as a single exponential at

points downstream from the laser. To verify this, consider a component transition

between an upper state n and a lower state k (the laser does not pump the various sub-

levels equally, so the components must be considered separately). Without laser ex-

citation, the upper state population N,'(t) is governed by

dNno/dt  = 1 Ni(t)Ain  - N,'(t) cl,, . (3.64)
i

With laser excitation, the population becomes N,'(t).  governed by

dNn'/dt  = Wkn[Nk'(t)  - Nn'(t)]  + 1 Ni(t)Ain  + N,,'(t)  on ,
i

(3.65)

where Wkn is the stimulated transition probability [3.161]. Notice that the cascade

contributions are the same in either case, so if we subtract (3.64) from (3.65) we

obtain

[$ + an] (N,‘(t) - Nno(ti] = Wkn(Nk’(t)  - N,'(t)] . (3.66)

Thus during the dwell time in the laser when Wkn # 0 there will be a pumping (either

up or down) proportional to the difference in population between the upper and lower

levels. Thus it is important to place the laser at an appropriate distance downstream

from the pre-exciter to optimize that difference. Downstream from the laser, where

'kn = 0, (3.66) yields a single exponential of inverse mean life on, if the upper

level populations with and without the laser differ. This method has so far been ap-

plied only to ground state and metastable state cases, but it may well be one of the

major applications of beam-foil methods in the future.
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3.8 Concluding Remarks

In the past few years the measurement and analysis of beam-foil decay curves has been

substantially improved and mean lives measured by this technique must be considered

to be among the most reliable values presently available. Cascade effects, once a

serious problem, are now correctly accounted for in the vast majority of cases. Beam-

foil measurements have provided more atomic mean-life information than all other di-

rect measurement techniques combined, even for neutral and singly-ionized atoms for

which other higher intensity sources are available. Post-foil optical pumping using

tunable dye lasers offers an extremely interesting possibility, which may lead to

new types of lifetime measurements. The beam-foil source has a unique ability to

produce highly-ionized and multiply-excited states of virtually any atom, and lifetime

measurements in such systems present a very fertile area for future research.
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