Chapter 20: Entropy and the Second Law of Thermodynamics

The Conservation of Energy law allows energy to flow bi-directionally between its various forms. For example in a pendulum, energy continually goes to/from kinetic energy and potential energy.

Consider putting some ice into a glass of water.

Conservation of energy would allow:
• ice getting colder and water getting hotter.
• ice getting warmer and water getting cooler.
• both ice and water staying at their initial temperatures.

Only one of these scenarios happens, so something must be controlling the direction of energy flow.

That direction is set by a quantity called entropy.
Entropy

Entropy has its roots in Quantum Mechanics. It is a measure of the available quantum states to a system. -- Or in other words, a measure of the order (or disorder) of a system. Mathematically related to probability.

Consider a deck of (shuffled) playing cards. Five cards are selected at random. Each 5-card combination is called a microstate and has an equal probability of occurring.

Prob any five card combination = \((52)*(51)*(50)*(49)*(48) = 311,875,200\)

Prob Royal diamond flush = \(1/(52)*(51)*(49)*(48) = 3.206\times10^{-9}\)

Prob ace of clubs = \(9.615\times10^{-2}\)
Entropy

Let’s bring the numbers down to illustrate the relationship between entropy and probability.

Consider an insulated box containing six molecules (N=6). The box is divided into the left half and the right half. Let n_1 be the number of molecules in the left half and n_2 be the number of molecules in the right half.

Note: $N = n_1 + n_2$

We now selectively pick molecules to be placed in the left half.

1st molecule we can pick any of the six available molecules.
2nd molecule we can pick any of the five remaining molecules.

etc.......

Total number of ways we can select the six molecules = $6! = 720$

Entropy

Molecules do not come with name tags (i.e., they are **indistinguishable**), so the order doesn’t matter.

In Figure a, there are $4! (=24)$ different ways we could have selected the four molecules for the left side and $2! (=2)$ different ways we could have left the other two molecules in the right half.

Multiplicity W is the resulting number of microstates.

$$W = \frac{N!}{n_1! n_2!} \quad W_{\text{III}} = \frac{6!}{4! 2!} = \frac{720}{24 \cdot 2} = 15$$

Note: $0! = 1$ and $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$
Entropy

Continuing with all possible combinations of the six molecules in the two halves:

<table>
<thead>
<tr>
<th>Label</th>
<th>n_1</th>
<th>n_2</th>
<th>Multiplicity W</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>0</td>
<td>$6!/(6!0!) = 1$</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>1</td>
<td>$6!/(5!1!) = 6$</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>2</td>
<td>$6!/(4!2!) = 15$</td>
</tr>
<tr>
<td>IV</td>
<td>3</td>
<td>3</td>
<td>$6!/(3!3!) = 20$</td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>4</td>
<td>$6!/(2!4!) = 15$</td>
</tr>
<tr>
<td>VI</td>
<td>1</td>
<td>5</td>
<td>$6!/(1!5!) = 6$</td>
</tr>
<tr>
<td>VII</td>
<td>0</td>
<td>6</td>
<td>$6!/(0!6!) = 1$</td>
</tr>
</tbody>
</table>

The most likely state (highest probability) is the state with the greatest multiplicity, W_{IV} with three molecules in each half (most disordered).

Entropy

So, ... How does this play out in Thermodynamics?

Entropy is the Boltzmann constant ($k = 1.38 \times 10^{-23}$ J/K) times the natural log of W.

$$S = k \ln W$$

Temperature can now be defined in terms of energy E and entropy S!!

$$T \equiv \left(\frac{\partial E}{\partial S} \right)_N$$

We’ll save that for a later course, though........
Chapter 20 Entropy and the Second Law of Thermodynamics

But what about the ice?
The ice is a very ordered state with all of the molecules in specific locations in the crystal. *(W small)*

Liquid water has many states for the water molecules. *(W large)*

Nature will maximize number of energetically-allowed microstates.
Thus, heat (energy) always flows from the water to the ice.

Relationship between entropy and heat

Entropy is a state property (like internal energy and temperature). It does not depend on the process, only depends on the initial and final states.

Define the change in entropy to be:

\[\Delta S = S_f - S_i = \int_i^f \frac{dQ}{T} \]

Q: energy transferred as heat
T: temperature in Kelvin

sign of ΔS and Q, SI unit of S: J/K
Reversible and Irreversible Processes

An irreversible process is one that cannot be reversed by means of small changes in the environment. Entropy increases. $\Delta S > 0$

e.g. A broken egg cannot go back to being a whole egg. Heat does not transfer from the ice to the water though it would not violate the law of energy conservation.

Note: ALL real processes are irreversible!

If an irreversible process occurs in a closed system, the entropy S of the system always increases, it never decreases. (entropy postulate)

Everything you do will increase the entropy of the universe! $\Delta S \geq 0$

Second Law of Thermodynamics

$\Delta S = 0$ reversible process; $\Delta S > 0$ irreversible process
Example with the ice and water

Suppose 0.1 kg ice at 0°C (273K) is in 0.5 kg water at 20°C (293K).

Calculate Heat transfers:

\[
Q_{\text{melt}} = m_{\text{ice}}L_f = (0.1\text{kg})(3.33\times10^5\text{J/kg}) = 3.33\times10^4\text{J}
\]

\[
Q_{\text{water}} = m_{\text{water}}c_w\Delta T \\
\Delta T = Q_{\text{water}}/m_{\text{water}}c_w = -15.9\text{K}
\]

\[
Q_{\text{water}} = m_{\text{water}}c_w(277.1 - T_f) = m_{\text{ice}}c_w(T_f - 273)
\]

\[
T_f = (277.1m_{\text{water}} + 273m_{\text{ice}})/(m_{\text{ice}} + m_{\text{water}}) = 276.4\text{K}
\]

What is the change in entropy of the ice as it melts at 0°C?

Convert all temperatures into Kelvin!!

\[
\Delta S_{\text{melt}} = S_f - S_i = \int_{T_i}^{T_f} \frac{dQ}{T} = \frac{m_{\text{ice}}L_f}{T}
\]

\[
= \frac{(0.1\text{kg})(3.33\times10^5\text{J/kg})}{273\text{K}} = +122.0\text{J/K}
\]
Chapter 20 Entropy and the Second Law of Thermodynamics

Example with the ice and water

Suppose 0.1 kg ice at 0°C (273K) is in 0.5 kg water at 20°C (293K).

What is the change in entropy of the ice water as it warms up to the final temperature?

\[\Delta S_{\text{ice-water}} = S_f - S_i = \int_{i}^{f} \frac{dQ}{T} = \int_{i}^{f} \frac{m_{\text{ice-water}} c_{w} dT}{T} = m_{\text{ice-water}} c_{w} \int_{i}^{f} \frac{dT}{T} \]

\[= m_{\text{ice-water}} c_{w} \ln \left(\frac{T_f}{T_i} \right) = (0.1 \text{ kg})(4186 \text{ J/kg-K}) \ln \left(\frac{273.4 \text{ K}}{273 \text{ K}} \right) = +5.2 \text{ J/K} \]

Example with the ice and water

Suppose 0.1 kg ice at 0°C (273K) is in 0.5 kg water at 20°C (293K).

What is the change in entropy of the water as it melted the ice?

\[\Delta S_{\text{water-melt}} = S_f - S_i = \int_{i}^{f} \frac{dQ}{T} = \int_{i}^{f} \frac{m_{\text{water}} c_{w} dT}{T} = m_{\text{water}} c_{w} \int_{i}^{f} \frac{dT}{T} \]

\[= m_{\text{water}} c_{w} \ln \left(\frac{T_f}{T_i} \right) = (0.5 \text{ kg})(4186 \text{ J/kg-K}) \ln \left(\frac{277.1 \text{ K}}{293 \text{ K}} \right) = -116.8 \text{ J/K} \]
Chapter 20 Entropy and the Second Law of Thermodynamics

Example with the ice and water

Suppose 0.1 kg ice at 0°C (273K) is in 0.5 kg water at 20°C (293K).

What is the change in entropy of the water as it cooled down to the final temperature?

\[
\Delta S_{\text{water cooled}} = S_f - S_i = \int_i^f \frac{dQ}{T} = \int_i^f \frac{m_{\text{water}} c_w}{T} \, dT = m_{\text{water}} c_w \ln \left(\frac{T_f}{T_i} \right)
\]

\[
= m_{\text{water}} c_w \ln \left(\frac{T_f}{T_i} \right) = (0.5 \text{kg})(4186 \text{ J/kg·K}) \ln \left(\frac{276.4 \text{ K}}{277.1 \text{ K}} \right) = -5.3 \text{ J/K}
\]

Chapter 20 Entropy and the Second Law of Thermodynamics

Example with the ice and water

Suppose 0.1 kg ice at 0°C (273K) is in 0.5 kg water at 20°C (293K).

Total change in entropy of the ice / water system as it came to thermal equilibrium

\[
\Delta S_{\text{total}} = \Delta S_{\text{melt}} + \Delta S_{\text{ice water}} + \Delta S_{\text{water melt}} + \Delta S_{\text{water cooled}}
\]

\[
= (+122.0) + 5.2 + (-116.8) + (-5.3) \text{ J/K}
\]

\[
= +5.1 \text{ J/K}
\]
ΔS for free expansion

Free expansion is an irreversible process. Problem: no clear relation between \(Q \) and \(T \) that allows us to calculate \(\Delta S = \int_{i}^{f} \frac{dQ}{T} \).

Since entropy is a state function, we can calculate \(\Delta S \) from a **reversible process which has the same initial and final state**.

For free expansion, \(T_i = T_f \). So we can use a reversible isothermal process (\(T = \text{constant} \)) with the same initial and final state to calculate \(\Delta S \).

\[
\Delta S = S_f - S_i = \frac{1}{T} \int_{i}^{f} dQ = \frac{Q}{T}
\]

In isothermal expansion, \(Q > 0 \), therefore \(\Delta S > 0 \) that means \(\Delta S > 0 \) for free expansion.

For a process that \(\Delta T \) is small compared to \(T \):

\[
\Delta S = S_f - S_i \approx \frac{Q}{T_{\text{avg}}}
\]
my goodness........ It’s December already!!

Water is heated on a stove. Which of the following temperature changes results in the greatest change in entropy?

(1) from 10°C to 20°C
(2) from 45°C to 55°C
(3) from 80°C to 90°C
(4) all have the same entropy change.

\[
\Delta S_{\text{water}} = \int \frac{dQ}{T} = \int \frac{m_{\text{water}} c_w dT}{T} = m_{\text{water}} c_w \int \frac{dT}{T} = m_{\text{water}} c_w \ln \left(\frac{T_f}{T_i} \right)
\]

Water is heated on a stove. Which of the following temperature changes results in the greatest change in entropy?

(1) from 10°C to 20°C => 283K to 293K => ln(293/283) = 0.035
(2) from 45°C to 55°C => 318K to 328K => ln(328/318) = 0.031
(3) from 80°C to 90°C => 353K to 363K => ln(363/353) = 0.028
(4) all have the same entropy change.
The Second Law of Thermodynamics

For the free expansion, we have $\Delta S > 0$. It is an irreversible process in a closed system.

For the reversible isothermal process, for the gas $\Delta S > 0$ for expansion and $\Delta S < 0$ for compression. However, the gas itself is not a closed system. It is only a closed system if we include both the gas and the reservoir.

During expansion:

$$\Delta S_{\text{gas}} = \frac{|Q|}{T} \quad \Delta S_{\text{res}} = -\frac{|Q|}{T}$$

So: $\Delta S_{\text{total}} = 0$

$$\Delta S \geq 0 \quad (\text{Second Law of Thermodynamics})$$

If a process occurs in a closed system, the entropy of the system increases for irreversible processes and remains constant for reversible processes. It never decreases.

Friday: Entropy in real world -- Engines

![Diagram of an engine](image)