Energies and lifetimes of excited states in copperlike Kr_{VII}

A. E. Livingston, L. J. Curtis, R. M. Schectman, and H. G. Berry

Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 8 March 1979)

The spectrum of Kr_{VII} has been observed between 180 and 2000 Å by using foil excitation of 2.5–3.5-MeV krypton ions. Twenty new transitions have been classified and eleven new excited-state energies have been determined within the n = 4–7 shells. The ionization potential is derived to be 1015800±200 cm⁻¹. The excited-state energies and fine structures are compared with recent relativistic Hartree-Fock calculations. The 4p-state lifetime has been measured by performing a simultaneous analysis of decay data for the 4p level and for its dominant cascade-repopulating levels. The 4p lifetime is found to be 30% shorter than previously measured values and is in excellent agreement with the result of a recent multiconfiguration Hartree-Fock calculation. The source of the discrepancy between this result and earlier measurements is discussed.

I. INTRODUCTION

The experimental determination of the atomic structures and excited-state lifetimes in highly stripped alkalike ions is important in modeling and diagnostic studies of both laboratory and astrophysical plasmas as well as for detailed testing of current relativistic atomic calculations. Ions of the Cu I isoelectronic sequence are prominent as impurities in high-temperature magnetically confined plasmas¹ and the emission spectra are also observed in spark sources,²,³ in laser-produced plasmas,⁴,⁵ and with beam-foil excitation.⁶,⁷ However, the atomic structures of moderately ionized copperlike systems are scarcely known. The alkalike character of these spectroscopically important ions suggests that fairly reliable calculations of both the atomic structures and lifetimes should be possible, and several such theoretical studies have been reported recently.⁸–¹³

For copperlike Kr_{VII}, transition wavelengths for the 4s–4p resonance multiplet have been measured by Fawcett et al.¹⁴ in a high-temperature (T) plasma. Tentative identifications for the 4p–4d transition wavelengths were reported in a recent beam-foil study by Druetta and Buchet,¹⁵ although no indication of the associated wavelength precision was given. No other excited states in Kr_{VII} have been classified previously, although an extensive wavelength list for foil-excited krypton spectra has been compiled by Cardon.¹⁶ Precise wavelength measurements involving more highly excited states in Kr_{VII} are needed in order to provide atomic structure data for testing the accuracies of current relativistic calculations in the regime of moderately high ionicity for copperlike systems.

Lifetime measurements for the 4p state in Kr_{VII} have been performed previously by several groups using beam-foil excitation.¹⁰,¹¹ However, these measurements are all in serious disagreement with theoretical calculations carried out using various methods.¹⁵–¹⁸ Similar discrepancies between theory and experiment exist for the lifetimes of low-lying excited states in other ionized members of the Cu I and Na I isoelectronic sequences. It has been pointed out by Crossley et al.¹⁹ and by Younger and Wiese²⁰ that such Δn = 0 transitions involve an unusually difficult experimental situation for which the excited states are heavily repopulated by cascades from highly excited high-1 states, including some with lifetimes comparable to that of the level being studied, as well as from other low-lying states. For these reasons, a careful remeasurement of the 4p lifetime in Kr_{VII} is clearly needed, with special attention being devoted to the effects of cascade contributions.

In this paper we present new wavelength classifications involving n = 4, 5, 6, and 7 states in Kr_{VII}, based upon our observations of the beam-foil spectrum of krypton. The excited-state energies that are derived from these wavelengths allow detailed comparison to be made with current relativistic atomic structure calculations for this region of the Cu I isoelectronic sequence. Using these newly identified transitions we have been able to perform the first direct measurements of the decay characteristics of states that repopulate this 4p level by cascade feeding. We have utilized methods involving the simultaneous treatment of correlated-decay data in order to extract the 4p lifetime from measured decays for the 4p state and cascading states. We have also analyzed the 4p-state decay data, using multieponential-fitting techniques, to show how even this approach can be made more reliable. Our results are compared with the previously measured lifetimes and with current theoretical calculations.
II. JOINT ANALYSIS OF CASCADE-RELATED DECAY CURVES

The measured decay curve25 of the 4\(\phi\) level, \(I_{4\phi}(t)\), is related to its direct cascades from the \(ns\) and \(nd\) levels, \(I_{n\phi}(t)\) and \(I_{d\phi}(t)\), by the instantaneous population equation

\[
\frac{dI_{4\phi}}{dt} = \xi_{d4\phi}I_{d4\phi}(t) + \sum_{n=5} \xi_{n4\phi}I_{n4\phi}(t) - \sigma_{4\phi}I_{4\phi}(t)
\]

(1)

where \(\xi_{n}\) denotes a normalizing constant which, if known, would convert the arbitrary units of the various decay curves to a common scale, and \(\sigma_{4\phi} = 1/\tau_{4\phi}\) is the reciprocal mean life of the 4\(\phi\) level. Equation (1) can be rewritten in the form

\[
y = \alpha_{4\phi} - \xi_{d4\phi}(x + x_0),
\]

(2)

where

\[
y = d(\ln I_{4\phi})/dt,
\]

(3)

\[
x = I_d4\phi(t)/I_{4\phi}(t),
\]

(4)

\[
x_0 = \sum_{n=5} \frac{[\xi_{n4\phi}I_{n4\phi}(t) + \xi_{d4\phi}I_{d4\phi}(t)]}{\xi_{d4\phi}I_{d4\phi}(t)}.
\]

(5)

Written in this fashion, \(y\) contains all information concerning the primary decay curve, \(x\) contains all information concerning all of the yrast \((l=n-1)\) cascades, and \(x_0\) contains all information concerning all of the nonyrast cascades. In a case where the dominant cascade repopulation is from the yrast chain, Eq. (2) becomes

\[
y = \alpha_{4\phi} - \xi_{d4\phi}x.
\]

(6)

The reciprocal mean life and normalizing constant can be obtained from the intercept and slope of a \(y\) vs \(x\) plot, with \(y\) and \(x\) computed regionwise from the measured \(I_{4\phi}\) and \(I_{d4\phi}\). Neglecting cascades outside the yrast chain, we express the initial replenishment ratio25 \(R(0)\) in terms of the fitting parameters by

\[
R(0) = \xi_{d4\phi}/\alpha_{4\phi}I_{d4\phi}(0).
\]

(7)

The largest contribution to \(x_0\) would be expected to arise from the 4\(\phi\)-5\(\phi\) transition. As will be discussed in Sec. V, there is a fortuitous cancellation in the 4\(\phi\)-5\(\phi\) transition integral for KrVIII, causing it to branch nearly 100\% to the 5\(\phi\)-5\(\phi\) and 4\(\phi\)-5\(\phi\) channels. Cascading from the 5\(\phi\) state was found to have little influence on the analysis, as will be discussed later. This situation makes KrVIII uniquely well suited among members of the Cu1 isoelectronic sequence for analysis by this method.

III. EXPERIMENT

The Dynamitron accelerator at Argonne National Laboratory provided beam currents of up to sever-

al \(\mu\)A of Kr+ ions in the energy range 2.5-3.5 MeV. The ions were excited by passage through 5-\(\mu\)g/cm\(^2\) carbon foils, which introduced an energy loss23 of about 2\%, yielding a post-foil ion velocity of 3.5-5 MeV incident ions of 2.31 mm/ns. The emission from excited krypton ions was dispersed by using either a McPherson 2.2-m grazing-incidence monochromator or a McPherson 1-m normal-incidence monochromator. Photons were detected with a windowless Channeltron electron multiplier or an EMR 541F multiplier phototube (LiF window), in conjunction with standard pulse-counting electronics.

Spectra were recorded by scanning the detector along the Rowland circle with a synchronous motor for the grazing-incidence monochromator, and by advancing the grating drive with a stepping motor for the normal-incidence monochromator. The wavelength range 100-2500 Å was surveyed in this manner.

The first-order linewidths were less than 1 Å for all spectra recorded. For the normal-incidence work, this required refocusing25 of the monochromator to eliminate the first-order Doppler broadening that results from observing the moving source with an instrument having a large acceptance angle. Emission line centers could be located usually to within \(\pm 0.1\) Å by means of computer fitting and reference to wavelength standards. Above 400 Å, KrVI and VII lines were available as standards. Additional standards were obtained by using an foil-excited He+ beam to produce the HeII Lyman series, and foil excitation of O+ ions to produce the vacuum-ultraviolet standard lines of Edlén.24 Both the first and second orders of dispersion were employed to study the spectra.

For lifetime measurements, the grazing-incidence monochromator was used, with a modified entrance slit27 placed close to the beam for much-improved spatial resolution. The resultant "time window" along the beam that was accepted by the monochromator was about 30 ps. Photons representing a chosen transition were collected at various distances from the foil for counting periods determined by the collection of a fixed amount of ion charge in a Faraday cup. The spatial separation of data points along the beam was about 30 μ (~20 ps) for the more rapid portions of the decays near the foil, with wider intervals being used in the decay tails. The decays were studied over a distance corresponding to about 5 ns, or some twenty 4\(\phi\) lifetimes. The detector dark count was below one per minute and was negligible compared with the signal over most of the decay lengths. Decay data were obtained by advancing the foil along the beam using a stepping motor. The control of stepping motors and the acquisition
and storage of data were accomplished by an online PDP 11/45 computer.

IV. RESULTS

A. Spectra

We have classified 25 transitions in the level scheme of Kr VIII from the beam-foil spectra (see Table I). Twenty of these lines represent new classifications. Also listed in Table I are the theoretical wavelengths provided by relativistic Hartree-Fock calculations of Cheng and Kim. In Table II we tabulate the excited-state energies derived from our wavelength observations (the 4p levels are based upon the more precise wavelengths for the resonance doublet reported previously by Fawcett et al.15). An energy-level diagram summarizing these results is shown in Fig. 1.

Examples of sections of our beam-foil spectra are given in Figs. 2 and 3. In Fig. 2 are shown the well-resolved fine-structure components of the 4p-4d multiplet at 434.1, 450.7, and 453.3 Å. The nearby line18 at 445.33 Å has been classified recently15,21 as the 4s4p1/2P2-4s4d1/2D3 transition in Kr VIII and may be used as a reference wavelength for these Kr VIII lines. We note that the 3P1-1D2 component of this Kr VIII multiplet lies25,26 at 434.28 Å and is not resolved from the Kr VIII 4P1/2-4D3/2 line at 434.1 Å. This blending has been taken into account in the determination of the Kr VIII wavelength by assuming that the line intensities within each multiplet are those predicted for LS-coupling conditions.

The 4f-5g transition is expected to lie in a relatively complicated region of the beam-foil spectrum near the Kr VII 4s24s4p1P resonance line at 583.3 Å. We have classified the feature observed at 583.2 Å as the 4f-5g transition in Kr VIII. In Fig. 3 this line is clearly stronger with respect to the Kr VII transition at 3.6 MeV than at 2.5 MeV and follows the intensity of 5g-6h transition at 115.2 Å that we have also classified in Kr VIII. Furthermore, in Fig. 3b, 583.2 Å is seen to be broader than the Kr VII line, reflecting the unresolved fine-structure interval that is expected to be about 0.2 Å (see note added in proof).

The observations of resolved fine-structure

<table>
<thead>
<tr>
<th>Transition</th>
<th>This work (Å)</th>
<th>Other experiments</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>4s1/2-5p1/2</td>
<td>184.5 ± 0.2</td>
<td>183.7</td>
<td></td>
</tr>
<tr>
<td>4s1/2-5p1/2</td>
<td>182.8 ± 0.2</td>
<td>185.0</td>
<td></td>
</tr>
<tr>
<td>4d1/2-5f1/2</td>
<td>285.0 ± 0.2</td>
<td>288.0</td>
<td></td>
</tr>
<tr>
<td>4d1/2-5f1/2</td>
<td>286.2 ± 0.2</td>
<td>291.1</td>
<td></td>
</tr>
<tr>
<td>4d1/2-5f1/2</td>
<td>288.5 ± 0.3</td>
<td>292.7</td>
<td></td>
</tr>
<tr>
<td>4d1/2-5f1/2</td>
<td>297.1 ± 0.2</td>
<td>301.1</td>
<td></td>
</tr>
<tr>
<td>4p1/2-4d1/2</td>
<td>434.1 ± 0.05</td>
<td>438.5</td>
<td>440</td>
</tr>
<tr>
<td>4p1/2-4d1/2</td>
<td>450.7 ± 0.05</td>
<td>450.5</td>
<td>455</td>
</tr>
<tr>
<td>4p1/2-4d1/2</td>
<td>453.3 ± 0.1</td>
<td>458.6</td>
<td>457</td>
</tr>
<tr>
<td>4d1/2-4f1/2</td>
<td>530.0 ± 0.1</td>
<td>536.1</td>
<td></td>
</tr>
<tr>
<td>4d1/2-4f1/2</td>
<td>533.8 ± 0.05</td>
<td>539.9</td>
<td></td>
</tr>
<tr>
<td>4d1/2-5f1/2</td>
<td>571.2 ± 0.05</td>
<td>578.7</td>
<td></td>
</tr>
<tr>
<td>4d1/2-5f1/2</td>
<td>572.3 ± 0.05</td>
<td>586.8</td>
<td></td>
</tr>
<tr>
<td>4f-5g</td>
<td>583.2 ± 0.1</td>
<td>596.5</td>
<td></td>
</tr>
<tr>
<td>4g1/2-4p3/2</td>
<td>651.6 ± 0.1</td>
<td>651.57 ± 0.02d</td>
<td>657.0</td>
</tr>
<tr>
<td>4g1/2-4p1/2</td>
<td>656.9 ± 0.4</td>
<td>695.91 ± 0.03d</td>
<td>700.7</td>
</tr>
<tr>
<td>4f1/2-4d3/2</td>
<td>1059.3 ± 0.2</td>
<td>1067.1</td>
<td></td>
</tr>
<tr>
<td>4f1/2-4d5/2</td>
<td>1096.7 ± 0.1</td>
<td>1103.7</td>
<td></td>
</tr>
<tr>
<td>5g-6h</td>
<td>1157.2 ± 0.1</td>
<td>1162.7</td>
<td></td>
</tr>
<tr>
<td>5d1/2-5f1/2</td>
<td>1191.5 ± 0.1</td>
<td>1203.2</td>
<td></td>
</tr>
<tr>
<td>5d1/2-5f1/2</td>
<td>1199.5 ± 0.1</td>
<td>1211.9</td>
<td></td>
</tr>
<tr>
<td>4f1/2-4d3/2</td>
<td>1267.4 ± 0.1</td>
<td>1278.8</td>
<td></td>
</tr>
<tr>
<td>4f1/2-4d5/2</td>
<td>1276.9 ± 0.1</td>
<td>1288.9</td>
<td></td>
</tr>
<tr>
<td>4f1/2-4d5/2</td>
<td>1766 ± 2</td>
<td>1774.6</td>
<td></td>
</tr>
<tr>
<td>6f-7f</td>
<td>1929.4 ± 0.2</td>
<td>1931.8</td>
<td></td>
</tr>
</tbody>
</table>

*Cheng and Kim,16 relativistic Hartree-Fock, unless indicated otherwise.
bDrutal and Buchel,17 beam-foil.
cWeiss,14 nonrelativistic Hartree-Fock with relativistic corrections.
dFawcett, Jones, and Wilson,15 high-temperature plasma.
*Cowen,13 nonrelativistic Hartree-Fock with relativistic corrections.
fHydrogenic value.
TABLE II. Energy levels in Kr viii.

<table>
<thead>
<tr>
<th>Level</th>
<th>Energy (cm⁻¹)</th>
<th>Experiment ³</th>
<th>Theory ³</th>
</tr>
</thead>
<tbody>
<tr>
<td>4s₁/₂</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4p₁/₂</td>
<td>143 697 ± 6</td>
<td>142 711</td>
<td></td>
</tr>
<tr>
<td>4p₃/₂</td>
<td>153 475 ± 7</td>
<td>152 210</td>
<td></td>
</tr>
<tr>
<td>4d₁/₂</td>
<td>374 060 ± 25</td>
<td>370 249</td>
<td></td>
</tr>
<tr>
<td>4d₃/₂</td>
<td>375 350 ± 25</td>
<td>371 536</td>
<td></td>
</tr>
<tr>
<td>5s₁/₂</td>
<td>480 100 ± 100</td>
<td>484 310</td>
<td></td>
</tr>
<tr>
<td>5p₁/₂</td>
<td>546 680 ± 30</td>
<td>540 661</td>
<td></td>
</tr>
<tr>
<td>5p₃/₂</td>
<td>550 420 ± 30</td>
<td>544 340</td>
<td></td>
</tr>
<tr>
<td>4f₁/₂</td>
<td>562 690 ± 30</td>
<td>556 745</td>
<td></td>
</tr>
<tr>
<td>4f₃/₂</td>
<td>562 750 ± 35</td>
<td>556 786</td>
<td></td>
</tr>
<tr>
<td>5d₁/₂</td>
<td>641 080 ± 35</td>
<td>634 374</td>
<td></td>
</tr>
<tr>
<td>5d₃/₂</td>
<td>641 600 ± 30</td>
<td>634 944</td>
<td></td>
</tr>
<tr>
<td>5g</td>
<td>724 980 ± 35</td>
<td>717 470</td>
<td></td>
</tr>
<tr>
<td>6h</td>
<td>734 130 ± 45</td>
<td>724 403</td>
<td></td>
</tr>
<tr>
<td>7f</td>
<td>872 440 ± 45</td>
<td>810 406</td>
<td></td>
</tr>
<tr>
<td>limit</td>
<td>1 015 800 ± 200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

³This work, unless indicated otherwise. ⁴Cheng and Kim; ⁵relativistic Hartree-Fock. ⁶Fawcett, Jones, and Wilson; ⁷high-temperature plasma.

Components for most of the multiplets allow us to determine the energy splittings for the 4p, 4d, 4f, 5p, and 5d states. These are listed in Table III, along with the relativistic Hartree-Fock predictions of Cheng and Kim and our own isoelectronic extrapolations using the Dirac-Sommerfeld screening parametrization method.

B. Decays

Detailed decay curves were measured for the 4p₁/₂, 4p₃/₂, 4d₁/₂, 4d₃/₂, and 4f levels. About 3.5 MeV Kr

![FIG. 2. Partial beam-foil spectrum of krypton, showing the 4p-4d multiplet in Kr viii at 434.1 Å, 450.7 Å, and 453.3 Å and the 4s4p ⁷P₂-4s4d ⁷D₂ transition in Kr vii at 445.3 Å.](image)

![FIG. 3. The beam-foil spectrum of krypton between 1153 and 1180 Å. Spectrum (a) was measured by a detector with a LiF window, which absorbs radiation below 1050 Å. Spectra (b) and (c) were measured at different ion energies with a windowless detector to include second-order emission between 577 and 590 Å.](image)
ten individual decay curves were obtained for each level, and the data were summed to provide curves such as those shown in Fig. 4 for the $4p_{3/2}$ and $4d_{5/2}$ states. These data sets were then analyzed by the various fitting techniques discussed in Sec. V D.

V. ANALYSIS AND DISCUSSION

A. Spectra

The classifications listed in Table I were assigned with the aid of isoelectronic term-value interpolations, the use of a screening parameter interpolation of fine-structure separations, and in particular with the guidance provided by relativistic Hartree-Fock calculations of Cheng and Kim, who utilize a computer program originated by Desclaux. The charge-state dependence of the variation of line intensity with ion energy was employed to confirm the Kr VIII classifications. Most lines were observed in both first and second order (occasionally in third order) for the purpose of improving the wavelength resolution and eliminating certain line-blending problems.

The spectrum of Kr VIII is strongly excited in the beam-foil source at the ion energies we used. Transitions among low-lying levels and transitions involving high l states for higher n are normally strong, so that most of our spectroscopic classifications are unambiguous. The existence of several closed loops within the level scheme for each of the two strong ($\Delta l \neq 0$) fine-structure component provides confirmation for the classifications. The $4p$-$5d$ transitions (near 200 Å) were not observed, but this is not surprising since there is an accidental cancellation in the associated transition integral for Kr VIII, allowing the $5d$ state to deexcite almost entirely via the $5p$ and $4f$ states. This absence of cascade repopulation of $4p$ by $5d$ is important in the analysis of the decay of the $4p$ state, as will be discussed below. The Z-dependent characteristics of such cancellations have been discussed recently by Curtis and Ellis. Our independent determinations of the $4p$- and $5d$-level energies predict wavelength values of 201.05 and 204.87 Å (± 0.02 Å) for the $4p$-$5d$ transitions. Our classifications of the $4p$-$5s$ transitions at 288.5 \pm 0.3 Å and 297.1 \pm 0.2 Å and our $5p$-level determination via $4d$ are consistent with our classification of the $5s$-$5p_2$ transition at 1766 \pm 2 Å. The $5s$-$5p_3$ transition should then appear at 1657 \pm 2 Å and is probably masked in our spectra by a strong neutral carbon multiplet emitted by excited atoms sputtered from the foil.

Comparison of our observed level scheme with that predicted by relativistic Hartree-Fock calculations for Kr VIII indicates that the theoretical excitation energies (relative to $4s$) are uniformly about 1.0% too low for all the levels observed. If we scale the theoretical energies by this empirical correction factor, the agreement between the theoretical values and our results becomes better.
than 0.1% for the $4d$, $4f$, $5p$, $5d$, and $5f$ states, whereas the theoretical $5s^-$, $5g^-$, and $6h$-level energies remain about 0.2% too high and those of the $4p$ levels lie about the same amount too low. It is interesting to note that qualitatively similar trends are revealed by comparison of the results of Ref. 16 with recent measurements of the spectra of copperlike SeVI3 and Mo XIV1, suggesting the presence of at least an l-dependent effect that is not accounted for in the calculations.

Our wavelength results show that the $4f$ state in Kr VIII possesses inverted fine structure (see Table III), in agreement with the relativistic Hartree-Fock values.16 The results of Ref. 16 reflect the difference in the interactions between the core and valence electrons for $4f_{5/2}$ and $4f_{7/2}$, within the Hartree-Fock approximation, that are included in these relativistic calculations. Our observations are consistent with the anomalously small, but positive, splitting observed by Reader et al.5 in copperlike Mo XIV. Similar inversions or distortions of fine-structure intervals have been known for some time in certain series of excited states in alkali-metal atoms.29 These fine-structure anomalies are attributed to the effects of configuration interaction with core-excited inverted doublet terms lying above the series limit,32,34 and they have been the subject of recent calculations.35

Finally, we point out that the wavelength values reported previously by Druetta and Buchet15 for the $4p-4d$ multiplet in Kr VIII are inaccurate by $1\,\text{Å}$. Furthermore, the tentative classifications suggested and tabulated previously by Kelly and Palumbo34 for the transitions $4p-5s$, $4p-4d$, and $4p-5d$ are incorrect.

B. Ionization potential

Since no more than two members of any Rydberg series have been established for this ion, it was not possible to determine the ionization potential through Ritz expansions of the quantum defects. However, the energies relative to the ground state for five "nonpenetrating" levels were measured in the experiment, so it was possible to determine the ionization potential from a screened hydrogenic model with core polarization. For nonpenetrating orbits (i.e., l greater than the value of any core electron) the energy $E(n,l)$ relative to the ground state (neglecting fine structure) can be written

$$E(n,l) = I_0 - T_H(n,l) - \alpha_x \langle r^4 \rangle_{nl} - \alpha_z \langle r^6 \rangle_{nl},$$

where I_0 is the ionization potential, $T_H(n,l)$ and $\langle r^4 \rangle_{nl}$ and $\langle r^6 \rangle_{nl}$ are the Sommerfeld term value and expectation value of r^4 for a hydrogenic system of effective charge given by the atomic number minus the number of core electrons, and α_x and α_z are the effective electric dipole and electric quadrupole polarizabilities of the core. The units of $E(n,l)$ are Rydbergs; the units of r are α_0 and the units α_x and α_z are α_0^3 and α_0^5, respectively, where α_0 is the Bohr radius. Formulas for T_H, $\langle r^4 \rangle_{nl}$, and $\langle r^6 \rangle_{nl}$ are given in Refs. 34 and 37. Since I_0, α_x, and α_z are constants for a given ion, they can be determined from Eq. (8) if three or more $E(n,l)$ values are known.

The $4f$, $5f$, $5g$, $6h$, and $7i$ levels are all nonpenetrating and have been measured. However, the $4f$ level has inverted fine structure, and the $2F$ series may be influenced by perturbations which cause it to deviate from the hydrogenic model of Eq. (8). A similar inversion of the fine structure is observed for the $3d$ state of the sodium isoelectric sequence,32 and there Eq. (8) is valid only for $l > 3$ despite the nonpenetrating nature of the $3D$ series. For the sodium sequence, the perturbations of the $3D$ series have been described in terms of configuration interaction with $3D$ terms produced by the excitation of the $2p^6$ shell, and a similar argument could be made for the perturbation of the $2F$ series in the copper sequence owing to configuration interaction with $2F$ terms produced by excitation of the $3d^{10}$ core. We have therefore determined the ionization potential variously including none, either, and both of the $2F$ energy values. For the $4f$ level, the centroid of the multiplet was used in the calculations. Least-squares fits were made, and the resulting parameters and the value of chi-squared per degree of freedom (d.f.) for each fit are given in Table IV. Clearly the number of $2F$ levels included in the fit has a considerable effect on the determination of polarizability parameters, but the ionization potential inferred is quite insensitive to the levels included. Making generous allowance for possible uncertainties, we have adopted the value $I_0 = 1015800 \pm 200 \, \text{cm}^{-1}$. This corresponds to $125.04 \pm 0.02 \, \text{eV}$, and is in agreement with, but of higher precision than a number of theoretical calculations, which have yielded $126, 123, 125.4, 124, 125$, and $123 \, \text{eV}$ (from Refs. 38, 39, 15, 13, 40, and 40, respectively), but disagrees with a calculation11 of $133.3 \, \text{eV}$. The

Table IV. Least-squares fits to the polarization formula for Kr VIII.

<table>
<thead>
<tr>
<th>Levels Included</th>
<th>I_0 (cm$^{-1}$)</th>
<th>α_x</th>
<th>α_z</th>
<th>χ^2/d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4f, 5f, 5g, 6h, 7i</td>
<td>1015864</td>
<td>0.156</td>
<td>0.516</td>
<td>1.9</td>
</tr>
<tr>
<td>4f, 5g, 6h, 7i</td>
<td>1015815</td>
<td>0.083</td>
<td>0.562</td>
<td>0.012</td>
</tr>
<tr>
<td>5f, 5g, 6h, 7i</td>
<td>1015816</td>
<td>0.100</td>
<td>0.544</td>
<td>0.016</td>
</tr>
<tr>
<td>5g, 6h, 7i</td>
<td>1015823</td>
<td>0.132</td>
<td>0.456</td>
<td>...</td>
</tr>
</tbody>
</table>
values for α_2 and α_4 are only crudely determined, but clearly indicate the importance of the quadrupole-pole polarizability. Using these values together with Table IX of Ref. 34, one can see that $\alpha_2(r^{-3})_{st}$ dominates over $\alpha_4(r^{-3})_{st}$ for the 2^F and 4^G series in Kr VIII, and is a large fraction of the total polarization energy for the 2^H and 4^I series.

We note that the precision of our derived value for the ionization potential in Kr VIII is higher than that reported recently for the isoelectronic ion Mo XIV, from high-resolution spectroscopy of a laser-produced plasma. This is possible because of the efficiency of the beam-foil source for the production of high-l (yrast) states, which are less susceptible to perturbations than are the lower-l states produced in the plasma source.

C. Simulated decay curves

A computer simulation of the $4s-4p$ decay curves for Kr VIII, using a population model $(2l+1)(n^*)^p$ with $p = 2-5$, and an instrumental resolution of 30 ps, is shown in Fig. 5. Here the dashed line represents the mean life to be extracted, and the solid circles represent our measured data. For $n^* \approx n$ and $p > 3$ this population model can be summed over infinite n and $l \leq n - 1$, to obtain a finite normalization in terms of the Riemann ξ function, whereas for $p \leq 3$ this sum is divergent. Simulated decay curves using normalizable population models have been studied by Crossley et al. They found, as can be seen here from Fig. 5, that long-lived decay tails are not produced for the higher ionization stages when such a normalizable population model is assumed, and that lifetimes should be reliably extractable. Younger and Wiese have simulated decay curves

for the $4p$ state in copperlike ions, using this type of model with $p = 3$ truncated at a maximum value of n, and found that this can lead to long-lived decay tails. They conclude that, in such cases, reliable extraction of mean lives would be difficult by standard curve-fitting procedures.

The experimental situation regarding the appropriate population model to be used is not clear at present. In some cases long tails, which can only be explained in terms of bound-state cascades through the inclusion of a very heavy population of states of very high n, are indeed observed. For example, Pegg et al. have reported very strong tails in the lowest $2P_{3/2}$ resonance transition of Cu XIX in the NaI sequence. Forster et al. have studied Cl IX–Cl XV and found that such tails occur for N–, O–, and F–like Cl but not for the lines studied in C–like or more highly stripped Cl ions. It can be seen in Fig. 5 that the decay curves measured in this experiment also contain tails which cannot be explained by cascades from levels populated according to the distribution $(2l+1)(n^*)^p$, with p greater than the limiting value for normalizable populations.

D. Lifetimes

1. Joint analysis of decays

The experimental decay curves contained 90 channels with a common origin relative to the foil position for all measurements. Channel 5 was determined to be the first point at which effects of upstream viewing and vignetting of the foil have completely vanished. For purposes of applying Eq. (6) the channels were grouped into sets (denoted henceforth as "panels" after Ref. (44)) of 3, 5, or 7 channels each. The effective values for the decay curves and the $4p$ logarithmic derivative were computed by fitting decay points within each panel to a polynomial in the logarithm, and evaluating the central magnitude and slope. The panels were nonoverlapping, i.e., the data contained in each panel were independent of those in the other panels. We performed panel polynomial fits for $4p$ by two alternative methods: using all data in each panel to compute both the central intensity and its derivative, and dividing the data into two subsets, using one to compute the central intensity and the other to compute its derivative. With the former method there is correlation between the uncertainties in x and y [Eqs. (3) and (4)], which is avoided in the latter method. With both methods the uncertainties were treated as if they were uncorrelated, and each panel was assigned a weight based upon an incoherent sum of the statistical uncertainties propagated into x and y [cf. Eq. (3.57) of Ref. 23]. The values and un-
certainties inferred for \(\tau_{4f} \) by these two methods did not significantly differ, and we conclude that the correlations between uncertainties in \(x \) and \(y \) can, at least in this case, be neglected. A plot of \(d(\ln I_{4f})/dt \) vs \(I_{4f}/I_4 \) is shown in Fig. 6.

Contributions to \(x_0 \) from \(5s_{1/2} \) were included in an extended analysis, but because the measured decay curve for \(5s_{1/2} \) diminished rapidly to zero, the results were virtually indistinguishable from those of Fig. 6. The degree to which the experimentally determined variables \(y \) and \(x \) conform to a straight-line dependence confirms that \(x_0 \) is indeed negligible for this case, and that all significant cascade effects in the \(4p_{3/2} \) decay curve are included in the \(4d_{5/2} \) decay curve. Purely statistical uncertainties were approximately one percent. However, a somewhat larger uncertainty in the derived mean life arises from the sensitivity of this value to the details of the grouping of points in the derivative computation and to the number of data points included in the fitting procedure. The \(4p_{3/2} \)-state lifetime that results from this analysis is 243 ± 10 ps.

We attempted similar analyses for the \(4p_{1/2} \) state, using decay data for 696 and 434 Å. However, the results were generally poor, with nonlinear plots of Eq. (6) and large scatter in the fits suggesting the absence of complete correlation between the two data sets. We suspected the cause to be our inability to spectroscopically resolve the KrVII \(4p^2 P_1 \) and \(4d^2 D_2 \) line at 434.28 Å from the KrVIII \(4p_{1/2}^- -4d_{5/2}^- \) line at 434.1 Å, as discussed in Sec. IV A. This was confirmed by our joint analysis of 696 Å with 450 Å, which yielded good fits and a value of 291 ± 12 ps for the \(4p_{1/2} \) life-
time. This latter analysis is not strictly correct, since 450 Å represents the cascade into \(4p_{3/2} \) instead of \(4p_{1/2} \), but the decay characteristics of \(4d_{5/2} \) and \(4d_{3/2} \) are not expected to be substantially different. We note also that the cube of the \(p \)-state lifetime ratio is identical to the ratio of \(4s-4p \) transition wavelengths, as expected theoretically under pure LS-coupling conditions. Oscillator strengths derived from these \(4p \)-state lifetimes will be compared in Sec. V D 3 with previous measurements and with theory.

Decay data for the unresolved \(4f \) states measured at 534 Å were also analyzed in conjunction with the decay data for the \(4d \) states. Attempts at carrying out a correlated analysis for the 534-434 Å pair showed that these data were not described by a linear form analogous to Eq. (6), again reflecting the line blending occurring at 434 Å. On the other hand, the 534-450 Å pair gave a good fit and yielded a lifetime value of 48 ± 4 ps for the \(4d_{5/2} \) state. This result compares favorably with the \(4d_{5/2} \) lifetime value of 50 ps from the relativistic Hartree-Fock calculations of Cheng and Kim\(^{16}\) and of Wiese\(^{14}\) and with the value of 51 ps from the Coulomb approximation results of Lindgård et al.\(^{18}\) but less well with the Hartree-Fock \(4d \)-state multiplet value of 64 ps from Younger and Wiese.\(^{22}\)

2. Multieponential fitting

The decay data for the \(4p_{1/2} \) and \(4p_{3/2} \) states were also analyzed by multieponential least-squares fits in order to ascertain under what circumstances reasonable mean lives can be obtained by this technique. If unconstrained two-exponential fits are performed, apparent mean lives of 390 and 330 ps are found for the \(4p_{1/2} \) and \(4p_{3/2} \) states, respectively—in essential agreement with the previous measurements of Refs. 10–12. This verified the Younger and Wiese\(^{22}\) suggestion that in this instance a simple two-exponential fit is likely to give erroneous results. The situation can be improved, however, by performing constrained multieponential fits based upon insight into the nature of the decay scheme being studied. Two physically significant aspects are immediately recognized: (a) there are likely to be cascade effects from shorter-lived levels \((\tau \approx 50, 170 \text{ ps}) \) which cause the observed "growing-in" of the measured decay curves and which require negative-amplitude mean life components in a multieponential fit, and (b) it is possible that cascading along the yrast chain will introduce one mean life component in the observed decay curve (the 330 ps meanlife of the \(7i \) level) which is close enough in value to the meanlife of the \(4p \) level to distort an unconstrained exponential analysis. (Mean lives

![FIG. 6. Plot of the combined \(4p_{3/2}, 4d_{5/2} \) decay data according to the variables of Eq. (6). The intercept of the fitted line with the y axis determines the reciprocal lifetime of the \(4p_{3/2} \) level. The good fit indicates that all significant cascades pass through the \(4d_{5/2} \) level.](image-url)
of such high-lying members of the yrast chain as this level are relatively well described by the hydrogenic values assumed in this argument.)

A simple test for the presence of short-lived cascades may be carried out by performing successive two-exponential fits to decays from which additional initial data points have been removed. A significant decrease in the fitted shorter lifetime normally indicates a growing-in decay curve. For both the 4p1/2 and 4p3/2 decays, we observed a substantial reduction of lifetime resulting from the exponential fits as well as a decrease in the reduced χ^2 as data points were eliminated, indicating that the inclusion of one or more fast negative decay components in the curve fits was clearly necessary.

Constrained multieponential fits were therefore carried out, which required the presence of one or two negative-amplitude decay contributions, and possibly one fixed 330-ps lifetime contribution. In Fig. 7 we have plotted the 4p lifetimes that result from three- through nine-exponential fits to our decay data, incorporating either one or two negative components. (The two-exponential unconstrained fit results are included for comparison.) In no case during these fits would the data allow more than two unconstrained positive exponential components to remain distinct in value. Thus, in order to achieve fits with five or more exponentials, one or more long-lived cascade components were constrained to hydrogenic lifetime values for $\pi > 7$, these being expected to dominate among possible cascade contributions. The results shown in Fig. 7 reveal the importance of including both of the expected growing-in cascade contributions in the fits (especially for 4p1/2).

When this is done the results display essentially no dependence upon the number of decay components fitted. In particular, there was little effect on the 4p lifetime when the expected 330-ps cascade component was not constrained in value. The effects of the growing-in components were the predominant features of the multieponential analysis. Since the reduced χ^2 values obtained were also nearly independent of the number of fit parameters, we have chosen in each case the approximate mean values of the various fits involving the growing-in cascades, namely 300 ± 25 and 270 ± 20 ps, to represent the constrained multieponential fit lifetimes for the 4p1/2 and 4p3/2 levels, respectively. The uncertainties quoted here represent simply the maximum spreads in these results, as an attempt to approximate systematic errors (due to cascade contributions) that are much larger than the statistical errors of the individual fits.

3. Comparison with other results

In Table V we have summarized our lifetime results for the 4p states, as well as results obtained by previous investigations, in terms of absorption oscillator strengths (f values) that are derived directly from the lifetimes. These experimental results are compared with various theoretical f values, also shown in Table V. The non-

<table>
<thead>
<tr>
<th>TABLE V. f values for 4s–4p in Kρ VIII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4s1/2–4p1/2</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>0.25 ± 0.01</td>
</tr>
<tr>
<td>0.24 ± 0.02</td>
</tr>
<tr>
<td>0.25 ± 0.01</td>
</tr>
<tr>
<td>0.18 ± 0.01</td>
</tr>
<tr>
<td>0.18 ± 0.02</td>
</tr>
<tr>
<td>0.16 ± 0.02</td>
</tr>
<tr>
<td>0.246</td>
</tr>
<tr>
<td>0.278</td>
</tr>
<tr>
<td>0.278</td>
</tr>
<tr>
<td>0.281</td>
</tr>
<tr>
<td>0.281</td>
</tr>
<tr>
<td>0.230</td>
</tr>
</tbody>
</table>

aJointly analyzed decay curves.
bMultieponential fits.
cNew beam-foil measurement.15
dPrevious beam-foil measurement.$^{10-42}$
eMulticonfiguration Hartree-Fock.13
fRelativistic Hartree-Fock.14
gHartree-Fock with relativistic corrections.14,15
hCoulomb approximation.18
iModel potential.17
relativistic multiconfiguration Hartree-Fock calculation of Froese Fischer13 provides only a mult
plot \textit{f} value (0.772). However, the fine-structure \textit{f} values may be derived by assuming the individu
al 4s–4p line strengths are equal and simply scaling the \textit{f}-value components in proportion to their transition wavelengths. These values are given in Table V. In addition, we note that all the nonrelativistic results of Ref. 13 quoted in Table V have been multiplied by the factor 1.044 to reflect the fact that experimental transition energies were not used in those calculations.

The lifetime results from our correlated-decay analysis and those from our constrained multie
xponential fitting agree fairly well with each other, although the former results are more fundamentally valid and are expected to be more reliable, as discussed above. We have therefore based our experimental estimates for the 4p lifetimes and their uncertainties entirely on the correlated-de
ay analysis. Previous beam-foil results by curve-fitting methods are seen to have yielded \textit{f} values that are about 30\% lower than our values. Our multieponential-fitting analysis suggests that the previously reported lifetime values are too long, owing in part to the failure of earlier in
vestigators to recognize the characteristics of the atomic structure of copperlike systems and consequently to allow for adequate cascade contribu
tions (in particular from shorter-lived levels) in the fitting of the decay data. Our correlated-decay analysis has provided reliable lifetimes for the 4p levels in Kr\textit{VIII} and has enabled us to appraise the reliability of the multieponential-fitting meth
od when it is partially constrained to reflect the characteristics of the excited-state structure.

Our correlated-decay results are in excellent agreement with the multiconfiguration Hartree-
Fock (MCHF) values of Froese Fischer.13 Since electron correlation effects dominate over relativistic corrections for these \textit{f} values in Kr\textit{VIII}, we expect these MCHF values to be the most reliable of the theoretical results listed in Table V. Comparison of the results of Ref. 13 with the results of relativistic calculations suggests that the electron correlation effects produce a reduction in \textit{f} value by about 15\%. A very recent model-potential approach17 to the treatment of core polarization yields even lower \textit{f} values.

VI. CONCLUSION

Our study of the beam-foil spectrum of krypton has enabled us to greatly extend the known ex
ited-state structure of Kr\textit{VIII} and to provide the first extensive comparison between experiment and recent relativistic atomic structure calcula
tions for moderately ionized copperlike systems. Our measurement and detailed analysis of the 4p-state lifetime in Kr\textit{VIII} have eliminated the previ
ous discrepancy between experiment and theory for this value and have helped clarify the extent to which certain cascade effects contribute to ob
served beam-foil decays.

Our present 4p-state lifetime measurement con
irms recent suspicions that strong cascade contribu
tions in the observed decay of this state, coupled with incomplete analysis of the earlier data, were the dominant source of previous dis
crepancies between theory and experiment. We have shown here that by a joint analysis of cor
related-decay curves the cascade contributions can be accurately accounted for and reliable lifetimes obtained. At the same time, we point out
that the multieponential-fitting analysis of com
plicated decay data may be greatly improved by
utilizing known aspects of the excited-state decay scheme and may also yield reliable, although less precise, lifetimes. We suggest that the care
ful application of both analysis techniques in a complemen
tary fashion can be used to provide reliable experimental lifetime results in the future.

The atomic structure results presented here for Kr\textit{VIII} affirm the utility of beam-foil spectroscopy, with its inherently modest resolution, in providing guidance for advanced atomic calculations of even single-valence-electron heavy ions. For more complicated valence-shell structures, where electron correlation effects further decrease theoretical accuracy, this spectroscopic source will prove to be of equal or greater value in the deter
mination of atomic structures for lower as well as much higher degrees of ionization.

Note: An independent study of the 4p lifetime in Kr\textit{VIII} using correlated-decay analysis tech
iques has been reported by Pinnington \textit{et al.}15 Their results have been included in Table V.

Note added in proof. It has been pointed out to us by J. Reader that isoelectronic interpolation using his unpublished data (see J. Opt. Soc. Am. 69, 1285 (1979)) for heavier ions suggests that the 4f–5g transition in Kr\textit{VIII} lies near 585.6 Å instead of 583.2 Å. This transition would then be blended with the strong resonance line of Kr\textit{IX} in our spectra (see Fig. 3). Although we cannot rule out this possibility, we would then be unable to clas
sify the strong line in our spectra at 583.2 Å, which appears to belong to the spectrum of Kr\textit{VIII} or IX. If the 4f–5g transition occurs at 585.6 Å, our derived value for the ionization potential of Kr\textit{VIII} becomes 1 015 ± 200 cm−1, and our derived electric dipole and quadrupole polarizabilities are not significantly affected.
ACKNOWLEDGMENTS

We wish to thank K. T. Cheng and Y-K. Kim for providing us with Dirac-Hartree-Fock results of energies and transition probabilities for copper-like ions in advance of publication, and we are pleased to acknowledge numerous fruitful discussions with K. T. Cheng regarding the copper isoelectronic sequence. We also thank B. L. Cardon and J. A. Leavitt for providing us with their wavelength list from the beam-foil spectrum of krypton in advance of publication. We are grateful to J. Reader for helpful advice on the 5s-level classification in Kr VIII and for pointing out the possible difficulty concerning the wavelength of the 4f–5g transition. This work was supported in part by the U. S. DOE Basic Energy Division of Chemical Sciences.

*Present address: Dept. of Physics, Univ. of Notre Dame, Notre Dame, Ind. 46565.
†Dept. of Physics and Astronomy, Univ. of Toledo, Toledo, 43606.