ACCELERATOR MASS SPECTROMETRY AT THE LUND PELLETRON

R. Hellborg, B. Erdalsson, J. Persson, P. Persson, and K. Stenström
Department of Physics, Lund University, Sölvegatan 14, SE-223 62 LUND, Sweden

L.J. Curtis
Department of Physics and Astronomy, University of Toledo, Ohio 43606, USA

G. Skog
Department of Quaternary Geology, Lund University, Tornvägen 13, SE-223 63 LUND, Sweden.

Accelerator mass spectrometry (AMS) is a highly sensitive method for counting atoms, both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg size) and shorter measuring times (less than one hour). In this report some current applications of the AMS technique at the Lund Pelletron accelerator are presented.

1 Introduction

One of the applications of nuclear physics techniques which has been greatly beneficial and vital to other fields of scientific endeavour is accelerator mass spectrometry (AMS). AMS has not only allowed refinements in the technique of carbon dating in the fields of archaeology and quaternary geology, but has also been demonstrated to be useful e.g. for: tracing 26Al in living systems; tackling hydrogeological problems by the use of 10Be and 36Cl; and following transport of 129I and transuranes from nuclear facilities.

In AMS, rare isotopes from a sample material placed in the ion source of an electrostatic tandem accelerator are measured by counting individual atoms with nuclear detection techniques after acceleration to energies in the MeV range. AMS evolved from nuclear physics laboratories, and several tandem accelerators originally installed during the 60's and 70's (and therefore of insufficient energy for today's nuclear physics experiments) have been rebuilt to be used for AMS.

2 Applications at the Lund AMS facility

2.1 Radiocarbon dating

Natural 14C (T1/2 = 5730 years) can be used in numerous applications, of which radiocarbon dating, with the possibility for dating back to about 50 000 years, is among the most important. Radiocarbon dating is based on the fact that living tissues can be enriched with 14C due to its atmospheric production. When an organism dies, the 14C in its tissues decays with a half-life of 5730 years.

This is possible because the 14C is produced by cosmic rays interacting with the atmosphere. The 14C decays internally, and the isotope of interest is the one in the tissues.

The 14C dating technique has been widely used in archaeology, palaeoecology, and in the study of the effects of nuclear power plants on the environment.

2.2 Studies of nuclear power plants

14C is one of the most abundant radionuclides created in nuclear power plants. It is released into the environment in chemical forms and can be traced by using the system of the accelerator.

An extensive study at a nuclear power plant in Sweden showed that the 14C concentration in the environment was lower than expected. The study was conducted using AMS techniques and showed that the 14C concentration was lower than expected.

As an example of a recent study, a study was conducted on the 14C concentration in the environment around a nuclear power plant in Sweden. The study showed that the 14C concentration was lower than expected.

2.3 Biomedical applications

14C is used as a tracer in biomedical research, particularly in various conditions such as cancer and on volunteers.

The 14C-labeling of drugs has been used to study the pharmacokinetics of drugs. The decay of the 14C-label can be measured to determine the distribution of the drug in the body.
years, is among the best-known and most practised applications. Radiocarbon dating is based on the property that the activity concentration of 14C in dead tissues can be used to calculate the time that has elapsed since death occurred. This is possible since all living organisms contain nearly the same proportion of radioactive carbon in their carbon stores and since, upon the death of the organism, the carbon which survives decomposition continuously loses 14C by its radioactive decay.

The 14C dating program at the Lund AMS facility is a collaboration between the Department of Nuclear Physics and the Department of Quaternary Geology. About 200 14C datings are performed per year at the AMS laboratory. The most common types of material used for AMS dating in Lund are charcoal, wood, bone, peat, marine shells and terrestrial macrofossils.

2.2 Studies of 14C releases from nuclear power plants

14C is one of the radionuclides which are produced to different degrees by neutron-induced reactions in all types of nuclear reactors. Part of the 14C created in reactors is continuously released as air-borne effluents in various chemical forms (such as CO$_2$, CO and hydrocarbons) through the ventilation system of the power plant to the surrounding environment during normal reactor operation.

An extensive investigation of the 14C releases from some Swedish nuclear power plants has been performed at the Lund AMS facility. Air emitted from the stacks was collected continuously over two-week periods and the 14C contents in the samples were analysed. The chemical form of the effluents has also been studied and the 14C concentration in willow leaves in the vicinity of a power plant has been measured. Measurements of the 14C activity concentration in annual tree rings and air around some Swedish nuclear power plants have recently been presented.

As an example, the 14C content of air samples collected in the down-wind direction at various distances from the nuclear power plant of Barsebäck (south west Scania, 2 BWRs each 600 MW) is shown in Fig. 1.

2.3 Biomedical applications of 14C

14C is used as a radioactive tracer in clinical nuclear medicine and it is used in various contexts in medical research and when testing new pharmaceuticals on volunteers. One way of carrying out these studies is to use "breath tests". The 14C-labelled compound is ingested and metabolised, resulting in the end-product carbon dioxide, which is exhaled and easily collected for measurement. The decay of the radionuclide is usually measured by gas flow counters or liquid
scintillators and the activity of the sample reveals the degree of, for example, fat malabsorption.

The AMS technique has in Lund been used to study the long-term retention of 14C after a fat-malabsorption test (using 14C-labelled triolein) by analysis of expired air. Studies are also being performed on the long-term retention of 14C after a 14C-urea test, which is used to demonstrate abnormal activity of gastrointestinal bacteria. The use of the AMS technique makes it possible to follow the turnover of the radionuclide administered for extensive periods and also to decrease the activity administered 2.

As an example of our biomedical investigations, the 14C specific activity in expired air at various times after administration of 14C-triolein is shown in Fig. 2. The dip in the curve after 6 days (A) came after the volunteer had eaten three meals within a short time and this result motivated some controlled fasting periods (32 hours long) when the volunteer was allowed only to drink water. Such fasting periods started on days marked B to E. When the fast began the exhalation of 14CO$_2$ increased, and then it decreased to its starting value when the person began to eat again. During the fast, stored body fat is used to a higher degree and since most of the administered 14C is still stored in the body, the 14C concentration in the expired air will increase significantly.

2.4 Application

An important question is how to detect the 14C contained in various foods and packaging materials of the food. This is one of the main advantages with the AMS technique compared to other methods. The technique has been shown to have a high sensitivity, so that AMS can be used to detect 14C even at very low levels with good absorption of the 14C activity.

2.5 Detection

In nuclear washing, the 14C is produced by nuclear reactions in the fuel. The total process has to be established, either via electron capture or via beta decay, or even via other reactions. The atom counting technique is based on the fact that the 14C is a very good candidate for small tansportation of energy or energy and momentum. The technique is based on the fact that 14C is the only candidate for the isobars for heavy ions.
of, for example, the long-term re-
absorption of unabsorbed triolein) by rapid lipolytic action on the long-term re-
absorbed triolein. The rate of abnormal re-
absorption of triolein makes it advisable to perform analyses of the specific activity
of triolein is shown in Figure 2. The volunteer had
received a standardized meal and only to drink water. When the fast
was terminated, the body fat is
replenished and the excess C is still stored and therefore significantly.

2.4 Applications of ^{14}C in food chemistry

An important topic in food chemistry technology is the interaction between
foods and packaging materials, the composition, quality or physical proper-
ties of the food and/or package can be altered. Several methods, each one
with advantages and disadvantages, have been and are being used in studies of
interactions between foods and packaging materials. In Lund the AMS
technique has been introduced into food chemistry with the aim of demonstrat-
ing that AMS can be a complementary and suitable tool for investigations of
the absorption of flavours in plastic packaging materials.3

2.5 Detection of ^{59}Ni in stainless steel

In nuclear waste management, ^{59}Ni is a most important radioisotope, since it is
produced by neutron activation in the stainless steel shielding surrounding the
fuel. The total activity concentration of ^{59}Ni, as well as of other radionuclides,
has to be established in preparation for final disposal. Because ^{59}Ni decays
only via electron capture and has a very long half-life (7.6×10^4 years), it is
quite difficult to measure the radiation emitted in its radioactive decay. The
atom counting approach of AMS would in this case be advantageous. However,
for small tandem accelerators, such as the Pelletron in Lund, the common
energy or energy loss detection techniques are not able to distinguish atomic
isobars for heavy elements such as Ni. One way to eliminate this problem is
to combine AMS with the detection of characteristic projectile X-rays. After analysis in the AMS system, the ions are stopped in a suitable target and it is possible to identify the ions by atomic number and thereby separate the isobars. Some promising preliminary measurements using the projectile X-ray detection technique have been performed. Recently, the method has been further refined and a method to extract nickel chemically from stainless steel will soon be presented as will a determination of the detection limit of 59Ni at the Lund AMS-system.

3 Conclusions and future plans

Only a few of all the possible long-lived isotopes have at the moment been used for AMS. An area which will grow in the future is biomedical studies. In the near future, large hospitals will install dedicated accelerators for 14C analysis with a high sample throughput. Small quantities of, for example, isotope enriched or radioactive marked chemical substances will be used. In this way the radiation dose to the patients will be more or less eliminated.

In Lund, further development will include installation of a recirculating pump in the high-voltage terminal stripper system. In this way an enhanced gas stripper efficiency is expected. The installation of a new injector, including a spherical electrostatic analyser and a 90° magnet will give a better mass resolution, especially for heavy atoms. This development will be carried out mainly for biomedical purposes.

References

EXPERIMENTAL

1. Flerov Laboratory
2. Moscow

The method of heavy nucleus nuclear reactions with the use of state nuclear research on the terminal structure of polyethylene detectors is discussed.

1. Introduction

Quite a few years ago, it was not possible to determine the radiation dose to the patients. It is possible that the radiation dose can be computed by the use of these detectors. The method is comparable to the existing experimental methods with respect to its ability to determine the cluster decay. The cluster decay is a spontaneous fission of 238U, 242Cm discovered before.

Evidence of the distribution of the radiation dose can be found in the tissue of the body as well as in the environment. The radiation dose is determined using different electron accelerators with mass number A. The radiation dose can be determined by the use of these accelerators. In the following discussion is obtained the chain of three steps. The present work is made of polyethylene detectors.