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The radial velocity of S II (6) 5453.810Å has been measured in 58 high–resolution

spectra of the B3 IV star ι Herculis which undergoes both orbital and pulsational

velocity variations. An iterative process was used to determine the orbit which

separated the orbital and pulsational variations, allowing a separate least–squares

solution for each. The analysis has yielded a new estimate of the orbital elements.

The pulsational properties & their time evolution were studied by taking

Lomb periodograms of 30–point “windows” of the orbit residuals and then fitting

a Fourier–harmonic series to the dominant period for each window. A previously

unreported 0.80d variation dominated the residuals early in the observations. Two

periods observed by Rogerson (1984) and their predicted beat period dominated the

residuals late in the observations. Most importantly, the amplitude of the 0.80d

mode gradually decreased until the role of dominant mode was taken over by the

Rogerson beat period whose amplitude gradually increased during the later part

of the observations. Evidence that this mode switching may be caused by tidal

interactions at periastron is presented.
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Chapter 1

Introduction

Iota Herculis is a well–studied B3 IV star that exhibits a wide variety of periodic

behavior on at least three time scales: a 112-day radial velocity variation due to its

motion in a binary orbit; pulsational variations in radial velocities, photometry, line

profiles, and line strengths with periods on the order of hours and longer periods on

the order of one to a few days.

Table 1 lists variations that have been noted in ι Herculis by previous (but

recently published) researchers. In this table, many different observable quantities

were used to detect variability including: line profiles (LP), radial velocity (RV),

equivalent widths (Wλ), and photometry (Phot).

There are many reasons why ι Her is a well studied star. Because it is a

sharp–lined B–type star, line blending is not a serious problem. For this reason, ι Her

is often used as an abundance standard in differential abundance analyses. The fact

that it is a sharp–lined star also makes radial velocity measurements very precise.

Iota Her is situated on the HR diagram in a strip of temperatures and luminosities

where pulsational instabilities are known to occur. This instability strip contains at

1



2
Table 1: Variability in ι Her

Type Variability Index Period(s) Reference

RV Balmer Hβ to H–15 112.7175 days Kodaira 1971

LP Si III λ4568 0.208, 0.413, Smith 1978
& 0.579 days

RV He I λλ3819, 4009, 113.804 days Abt & Levy 1978
4026, 4143,
4387, & 4471

Wλ P II λ4127.57 1 or 2 days Smith 1981
Ar II λλ4128.4 & 40 minutes – 2 hours
4131.73
Cl II λ4132.48 Few hours

RV Fe III λ1096.606 1.515 & 1.618 days Rogerson, 1984

Phot UV filter* 0.12 or 0.14 days Chapellier et al. 1987

RV Si II λλ4128 & 4131 1.43 or 3.33 days Mathias & Waelkens 1995

* Bandpass 100Å, Central Wavelength 3500Å, Sareyan et al. 1976

least two classes of pulsating stars of which ι Her may be a member; these classes

are the β Cep class and the 53 Per class (and the related Slowly Pulsating class of

B–type stars (SPB)). The β Cep stars are late O–type to early B–type stars that

pulsate predominantly in radial modes with periods that range from 0.1 days to 0.3

days, although many are known to have non–radial pulsation modes as well (Unno

et al. 1989; Moskalik 1995). Radial pulsations are accompanied by variations in the

temperature and pressure of the star’s entire atmosphere; the result is variations in

light, color, line widths and line strengths, and large–amplitude variations in radial

velocity (Cox 1980).

The 53 Per stars surround the β Cep stars in the instability strip, having
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spectral types that range from late O–type to middle B–type; these stars are

classified from line profile variations that arise from non–radial modes with periods

that range from 0.5 days to 4.1 days (Cox 1980; Moskalik 1995). The SPB stars

display pulsational characteristics very similar to the 53 Per stars; they differ

in that they are classified by photometric variations and tend to be mid B–type

stars (Waelkens 1991). Non–radial pulsations are accompanied by relatively small

variations in temperature and pressure; the result is variations in line profiles that

lead to small–amplitude variations in radial velocity (of line centroids) as well as

light and/or color variations (Cox 1980).

Radial and non-radial pulsations have characteristically different periods

because they arise from different restoring forces; radial pulsation modes have

pressure forces as the restoring force whereas non–radial modes have the relatively

weak force of buoyancy as a restoring force. The strength of the pressure and

buoyancy forces in the stars in the instability strip determine the characteristic

periods of the radial and non–radial pulsation modes according to theoretical models;

pulsation periods of 0.1 to 0.3 days imply radial β Cepei–type pulsation while

pulsation periods of 0.5 to 4.1 days imply non–radial 53 Per–type pulsation. In stars

that undergo non–radial pulsations, stellar rotation can cause pulsation modes to

occur in groups of closely spaced periods. Two of these periods can beat to produce

a variation that is much longer than 4.1 days (Unno et al. 1989). Because radial

pulsation modes are not affected in this way by rotation and are therefore always

widely separated in frequency, any variations with periods longer than 4.1 days that

can be attributed to beating necessarily point toward non–radial pulsations.

Table 1 demonstrates that both time scales (and therefore both types of

pulsations) have been observed in ι Her. Table 1 also shows that there is a general

lack of agreement among different investigators as to what period best describes
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variations in this star. The lack of agreement may be due to the fact that ι Her

(like many β Cep and 53 Per stars) can display multiperiodic behavior where several

pulsational periods are observed at the same time. Multiperiodic behavior may also

take the form of mode switching where different modes are active at different times.

Such behavior may contribute to the disagreement seen in Table 1.

The purpose of this work is to classify pulsation periods of ι Her in a

homogeneous set of radial velocity observations taken over a long timebase. The long

baseline enables the orbit to be determined and its effects subtracted from the data

so that the pulsational properties can be studied. The long baseline also provides

the opportunity to identify non–radial pulsation periods through direct detection

and/or the detection of their beat periods. The observations in this work also enable

the detection of short–period, β Cep–type, radial pulsations, should they be strongly

present in the data. An extreme definition of the β Cep class states that a radial

mode (i.e. short–period) pulsation must be dominant (Sterken & Jerzykiewicz 1990).

Short–period variations may have been observed in ι Her with the photometry of

Chapellier et al. (1987) and are suggested by the radial velocity work of Mathias &

Waelkens (1995). Because radial pulsations typically yield larger amplitude radial

velocity variations than non–radial pulsations and because the present data set is

of high enough quality to detect (at least) the dominant pulsation mode, this work

will be able to determine whether ι Her belongs to the β Cep class of stars as so

defined. A careful examination of a star such as ι Her may clarify the relationships

between the β Cep, 53 Per, and SPB classes of pulsating B–type stars. A better

understanding of stellar pulsations will ultimately lead to a deeper understanding of

the internal structure of stars.

Another purpose of this work is to examine the multiperiodic behavior of ι Her.

The data will be examined for evidence that more than one pulsation mode is active
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at a given time as well as for signs of mode switching, in which the role of dominant

pulsation mode is passed between two different pulsation modes. Pulsation modes

will also examined for changes in radial velocity amplitude.



Chapter 2

Observations

Fifty–eight high–resolution CCD échelle spectra have been obtained of ι Her with

the 1–m telescope of Ritter Observatory along with 25 spectra of radial velocity

standards. These observations were obtained from February 2, 1994 through March

11, 1995. The data consist of single observations (1 spectrum per night) as well as

many series of spectra taken consecutively over several hours.

The spectral resolution of the observations is determined by the width of the

spectrograph’s entrance slit. All observations used the ‘standard’ wide slit; the

sacrifice of spectral resolution was made to increase throughput and shorten exposure

times. This choice of slit width gives an instrument function with a FWHM of 4.2

pixels (0.23Å) at 5875Å which corresponds to a resolving power of R = 26,000.

The observations were obtained in two different wavelength regions of the

optical spectrum. The 26 “blue” observations contain 15 partial échelle orders

surrounding Hβ; each has a spectral coverage of about 50Å and is separated from

adjacent partial orders by about 50Å. The 32 “red” observations contain 9 partial

échelle orders surrounding Hα; each has a spectral coverage of about 70Å and is

6
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separated from adjacent partial orders by about 90Å.

Because the quantum efficiency of the CCD chip and the transmission of the

fiber optic cable are much larger in the red than in the blue, the observations in

these two regions have different characteristic exposure times. Table 2 shows the

characteristics of the blue and red observations as well as the combined average

properties (weighted by the number of observations in each region).

Table 2: Properties of the Observations
Property Blue Obs Red Obs Blue + Red Obs.

Exposure Times (sec) 1200 – 2400 300 – 1800 300 – 2400

Ave Exposure Time (sec) 1550 950 1200

SNR (Range) 50 – 100 100 – 150 50 – 150

Average SNR 75 125 100

The spectroscopic observations were reduced using standard routines from

IRAF (Image Reduction and Analysis Facility) Version 2.10.3 Beta.1 The spectra

were corrected for the bias voltage on each pixel of the CCD chip, flat–fielded to

remove pixel–to–pixel sensitivity variations, and wavelength–calibrated as described

below. The light from the calibration lamps used in the reduction of the data travels

the same optical path through the fiber and the spectrograph as does the light from

stars.

The bias voltage pattern on the CCD chip was estimated by taking 5–10 “bias”

frames during each night of observing. These spectra are near–zero length exposures

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of

Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.
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taken with no light falling on the CCD. The bias exposures are averaged to eliminate

the effects of readout noise. The average bias is subtracted from all other exposures.

During each night of observing, 5–10 “flat” frames were taken; the flat spectra

are exposures of a nearly continuous–spectrum lamp. The flat lamp has a spectral

energy distribution that varies slowly so that when the light is dispersed onto

the CCD chip, the illumination around each pixel approximates a flat source of

radiation. In this way, the photoelectron count at each pixel can be compared to its

neighboring pixels to determine pixel–to–pixel sensitivity variations; these variations

are then divided out of the stellar spectra. The flat exposures are also used to locate

where the échelle orders lie on the CCD chip.

Finally, the stellar spectra were wavelength calibrated by taking comparison

spectra throughout each night of observing, often directly before and after each

stellar exposure. A comparison spectrum is an exposure of light from a Th–Ar gas

discharge lamp. Because the pattern of emission lines and their wavelengths are

known, the comparison spectra can be used to assign a wavelength value to each

pixel on the CCD chip. Because small displacements of the CCD chip within the

system can cause the spectrum to shift with respect to the pixel coordinates on

the CCD chip, many comparison spectra are taken during each night of observing.

For each stellar spectrum, an average comparison spectrum is formed by taking a

weighted time average of comparison spectra that surround the time of the stellar

observation. For each stellar spectrum, a wavelength callibration is obtained from

fitting the known wavelengths of Th–Ar lines to the observed pattern of lines in the

average comparison spectrum. The rms deviation between the known wavelengths

and those in the average comparison spectra is typically between 0.001 – 0.005 Å.

Tables 3 and 4 list the observations. The heliocentric Julian date corresponds

to the number of days that have passed since UT time 12:00 on the first day of the
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year 4713 B.C., where ‘heliocentric’ refers to a quantity as it would be measured by

an observer at the barycenter of the solar system. For the remainder of this work,

HJD is understood to be a “reduced” date equal to the HJD at mid exposure minus

2,449,000. VHELIO is an additive correction term that converts the observed radial

velocities to heliocentric radial velocities (HRV). The HJD’s and VHELIO correction

terms for each observation were computed using the IRAF routine RVCORRECT.

Table 3: Observations in the Blue Region

HJD VHELIO (km s−1) Exp Time (sec) Image No. Observer(s)
531.6722 – 2.86 1200 940628.006 KG
533.6473 – 3.17 1200 940630.009 KG, MB
564.5899 – 7.71 2400 940731.009 NDM, MB
564.6800 – 7.86 1800 940731.013 NDM, MB
564.7043 – 7.89 1800 940731.015 NDM, MB
564.7286 – 7.93 1800 940731.017 NDM, MB
564.7530 – 7.95 1200 940731.019 NDM, MB
564.7711 – 7.97 1800 940731.021 NDM, MB
581.5824 – 9.45 1200 940817.007 CLM
581.6024 – 9.48 1200 940817.009 CLM
581.6204 – 9.51 1200 940817.011 CLM
581.6386 – 9.53 1200 940817.013 CLM
581.6579 – 9.56 1200 940817.015 CLM
581.6947 – 9.61 1200 940817.019 CLM
603.5936 –10.58 1800 940908.007 CLM
603.6183 –10.61 1800 940908.009 CLM
603.6427 –10.63 1800 940908.011 CLM
603.6907 –10.67 1800 940908.015 CLM
625.5192 –10.14 1800 940930.012 CLM, PO
625.5432 –10.17 1800 940930.014 CLM, PO
625.5670 –10.20 1800 940930.016 CLM, PO
625.5906 –10.22 1800 940930.018 CLM, PO
625.6147 –10.24 1800 940930.020 CLM, PO
625.6405 –10.25 1800 940930.022 CLM, PO
653.5462 –7.67 1800 941028.014 CLM
653.5690 –7.68 1800 941028.016 CLM
Observers were CLM=Christopher L. Mulliss, NDM=Dr. N. D. Morrison
KG=Karl Gordon, MB=Michelle Beaver, and PO=Patrick Ouellette

The ability of the observations to detect periodic variations in ι Her is

determined by two time scales: the exposure times and the intervals between

observations. The exposure times range from 300s (0.003d) to 2400s (0.028d) with

an average of 1200s (0.014d). The average exposure time is only about 14% of the
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Table 4: Observations in the Red Region

HJD VHELIO (km s−1) Exp Time (sec) Image No. Observer(s)
389.9589 9.15 1800 940206.026 CLM
444.8891 9.88 1200 940402.026 CLM
485.7911 5.00 600 940513.018 JA
490.7673 4.21 900 940518.022 KG
490.7784 4.19 900 940518.020 KG
491.7902 4.00 900 940519.024 KG
492.7008 3.97 900 940520.018 CLM
493.7967 3.65 900 940521.027 CLM
495.7611 3.37 1200 940523.005 JA
500.7418 2.54 900 940528.017 CLM
501.7119 2.41 600 940529.007 NDM
501.7201 2.39 600 940529.008 NDM
501.7293 2.38 600 940529.009 NDM
506.7050 1.53 1200 940603.015 CLM
510.7306 0.77 1200 940607.019 NDM
510.7469 0.74 1200 940607.020 NDM
512.6654 0.51 1200 940609.016 KG
513.7287 0.23 300 940610.009 JA
514.6642 0.15 600 940611.013 CLM, PO
534.6291 – 3.31 1200 940701.014 JA, MB
544.6914 – 5.06 600 940711.027 JA
574.7255 – 9.02 1200 940811.014 CLM
594.7509 –10.44 900 940830.026 KG
594.7644 –10.44 900 940830.028 KG
599.5956 –10.48 1200 940904.016 NDM
599.6268 –10.52 600 940904.020 NDM
599.6804 –10.58 900 940904.024 NDM
613.5981 –10.60 1200 940918.012 NDM
667.5150 – 5.65 1200 941111.016 PO
778.9597 10.60 900 950303.038 KG
779.8612 10.73 900 950304.043 CLM
786.9398 10.71 1200 950311.008 CLM
Observers were CLM=Christopher L. Mulliss, NDM=Dr. N. D. Morrison
JA=Jason Aufdenberg, KG=Karl Gordon, MB=Michelle Beaver, and
and PO=Patrick Ouellette

minimum pulsation period (about 0.1d) that can be expected from pulsations in

early B-type stars (see Chapter 1). Thus the exposure times do not inhibit the

detection of even the shortest–period variations expected due to pulsations. The

interval between adjacent observations spans a large range: 0.008d to 111.445d. The

average interval is 6.965d, but this is heavily weighted by several large gaps in the

data. Not including the three largest gaps in the data, the interval reduces to only

3.515d; this indicates that the data set is well suited to detecting variations with
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periods on the order of days or longer. The data are also well suited to observe

variations that occur on shorter time scales because 36 of the 58 observations were

taken in series and the average interval between these observations is only 0.026d.

In general, then, the data set is well suited to detect variations on the time scale

expected for radial pulsations and the longer periods that result from non-radial

pulsations and their beat periods.



Chapter 3

Measurements

1. Line Identifications

The first step in the analysis of the spectra was to identify as many absorption

features as possible. The line identifications were done by means of an interactive

IDL routine.

The identifications were based on 3 criteria. All wavelengths in the line list are

from C. Moore (1959) unless otherwise stated.

(1) All correctly identified lines should yield the same radial velocity in a given

spectrum if one assumes that all absorption features are photospheric and that they

are more or less co–moving at all times. In practice, the radial velocities from various

identified absorption lines within a given spectrum had a standard deviation about

their mean of 0.5 km s−1 or less, a value that is comparable to the observational

error estimate given in Section 2.3 below.

(2) If the identification of an absorption feature is correct, then other lines of

comparable or greater strength from the same multiplet should also be present in

the spectrum.

12
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(3) For as many lines as possible, additional sources of verification were sought in

the literature for each line identification.

Tables 5 and 6 list the line identifications in the blue and red spectra. Lines

were included in the table that were relatively unblended, strong enough to be seen

through noise and blends in the continuum, and whose identification is fairly certain

in this author’s opinion. If no verification is given, the identification is based only

on criteria (1) and (2).

The red and blue spectra overlap in a small wavelength region, in which lies

a relatively strong line of S II (6) at a rest wavelength of 5453.810Å. This line is

plotted in Figure 1. Because this particular line provides a baseline which includes

approximately twice as many observations as lines that appear in the red or blue

observations only, it was the focus of this project.
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Fig. 1.— The S II (6) λ5454 line in the blue observation at HJD 625.5432.

ndm
Stamp
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Table 5: Blue Line Identifications
Line Identification

Line No. Species Wavelength(Å) Verification(s)

1 Si II (3) 4130.884 [K]
2 He I (53) 4143.759 [K]
3 S II (44) 4153.098 (K)
4 S II (44) 4162.698 [P],(K)
5 O II (19) 4169.230 (K)
6 S II (49) 4294.432 (K)
7 He I (51) 4387.928
8 O II (26) 4395.950 [P],[K]
9 O II (5) 4414.909 [P],[K]
10 O II (5) 4416.975 [P],(K)
11 He I (14) 4471.583
12 Mg II (4) 4481.230 (P),(K)
13 N II (58) 4552.527 (K)
14 Si III (2) 4567.823 [P],[K]
15 Si III (2) 4574.759 [P],[K]
16 O II (1) 4649.139 [P],[K]
17 H I (1) 4861.332
18 S II (7) 4991.940
19 N II (19) 5005.140 [K]
20 S II (7) 5103.300
21 S II (39) 5201.160 [P]
22 S II (39) 5212.610
23 S II (38) 5320.700
24 S II (38) 5345.670
25 S II (6) 5453.810 [PA]
26 S II (6) 5473.590

( ) = Blended, [ ] = Not blended
K=Kilian et al. 1991, P=Pintado & Adelman 1993, M=Moore 1959, and
PA=Peters & Aller 1970
Line No. 3) Possibly blended with O II (19) λ4153.302.
Line No. 5) Blended with He I λ4169.0 according to K.
Line No. 11) Blend of He I (14) λλ4471.477 & 4471.688; average used.
Line No. 12) Blend of Mg II (4) λλ4481.129 & 4481.327;
following P, the average wavelength of 4481.23Å is used.
Line No. 13) Blended with Si III (2) λ4552.616 according to K.
Line No. 14) M gives wavelength of 4567.872Å but K give 4567.823Å.
The wavelength of K is used.
Line No. 15) M gives wavelength 4574.777Å but K give 4574.759Å.
The wavelength of K is used.
Line No. 21) Blend of S II (39) λλ5201.000 & 5201.320; average used.
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Table 6: Red Line Identifications
Line Identification

Line No. Species Wavelength(Å) Verification(s)

1 S II (6) 5428.640 [PA]
2 S II (6) 5432.770 [PA]
3 S II (6) 5453.810 [PA]
4 S II (6) 5564.940 [PA]
5 S II (11) 5578.850
6 S II (11) 5606.110 [PA]
7 Si III (4) 5739.762 [PA]
8 He I (11) 5875.752
9 Si II (2) 6347.091 [PA]
10 Si II (2) 6371.359 [PA]
11 Ne I (3) 6382.991 [PA]
12 Ne I (1) 6402.245 [PA]
13 H I (1) 6562.817
14 C II (2) 6578.030 [PA]
15 C II (2) 6582.850 [PA]

( ) = Blended, [ ] = Not blended
M=Moore 1959, PA=Peters & Aller 1970
Line No. 7) PA give a wavelength of 5739.73Å but M gives 5739.762Å.
The wavelength of M is used.
Line No. 8) Blend of He I (11) λλλ5875.618, 5875.650, & 5875.989; average used.
Line No. 9) PA give a wavelength of 6347.10Å, but M gives 6347.091Å.
The wavelength of M is used.
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2. Radial Velocity Measurements

2.1. Description of the Method

All wavelength measurements that are used in this paper correspond to the

wavelength where a fitted absorption line profile has its minimum flux. The

measurements were made using a graphically interactive IDL routine in the following

manner. The user estimates the wavelength that corresponds to the minimum of

an absorption line by pointing a cursor at a plot of the spectrum. The wavelength

values of the two data points that surround the cursor position are averaged to

give Wo. To a user–specified number of data points to the right and left of Wo, a

polynomial of the following form is then fitted:

Fn = a + b (W–Wo)+c (W–Wo)
2

where Fn is the continuum normalized flux and W is the wavelength in angstroms.

The user then may adjust how many data points on each side of Wo are

included in the polynomial fit. When the user is satisfied with the fit, the minimum

of the fitted polynomial is found; this value is taken as the observed wavelength of

the line. In practice at least 5 data point, corresponding to the bottom 50–60% of

the profile, were always used to fit the line core to the polynomial.

Series of measurements of this kind cannot by themselves tell whether changing

line minima are due to the entire line shifting, as in the Doppler effect, or variations

in the line shape; thus the measurements are affected by both of these possible

causes.
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2.2. Physical Interpretation of the Measured Velocities

While fitting a polynomial to the line core is a common means of measuring

wavelengths (Sabbey et al. 1995 for example), it is not intuitive what such a

measurement physically means in a star whose absorption lines are known to be

slightly asymmetric (Leckrone 1971) due to the effects of nonradial pulsations. For

a symmetric absorption line, it is obvious that the minimum of the line profile

coincides exactly with the centroid of the line. The purpose of this section is to

investigate how close this equality is for the slightly asymmetric lines that can occur

in this star.

The blue observation, Image No. 940731.009, was chosen for this test because

the S II absorption lines in it are slightly asymmetric. This is noticeable by

inspection only when the line profiles are compared to those from observations that

were taken immediately before and after 940731.009. In this spectrum, the line

asymmetry parameter (as described in Section 3) of the S II λ5454 has a value very

close to that averaged over all 58 observations. Thus, the line asymmetry in the

940731.009 spectrum is representative of the overall level of line asymmetry in the

observations. Table 7 compares the wavelengths of all the S II lines in this spectrum,

as measured by the profile minima and the line centroids (as measured by the e–key

in IRAF’s SPLOT routine). Refer to Section 1 for the line identifications listed in

the table.

Based on the last column of Table 7, the average difference and its standard

deviation about this mean are +0.006 Å and 0.006 Å. For reference, 0.006 Å at

a wavelength of 5454 Å corresponds to 0.3 km s−1 in radial velocity; this value is

smaller than the estimate for the observational error in radial velocity that is found

in Section 2.3 below. Thus, within a 1 sigma error bar, the difference between the

two sets of measurements is statistically negligible.
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Table 7: A Comparison of Wavelength Measurements

Wavelength (Å)
Blue Line No. (Profile Minimum) (Centroid) Difference (Å)

3 4152.881 4152.898 0.017

4 4162.487 4162.495 0.008

6 4394.217 4294.224 0.007

20 5103.124 5103.130 0.006

21 5200.785 5200.785 –0.000

22 5212.417 5212.419 0.002

23 5320.483 5320.494 0.011

24 5345.474 5345.484 0.010

25 5453.611 5453.607 –0.004

26 5473.371 5473.375 0.004

The radial velocities in this work, while calculated from the line minima,

are statistically equivalent to velocities based on line centroids because the line

asymmetry of S II (6) λ5454 is quite small in the current observations. Therefore,

these results are directly comparable to sets of radial velocities that are based on

line centroid wavelengths.
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2.3. Estimation of the Observational Error

In order to determine the observational error associated with the radial velocity

measurements, 25 observations of 6 G and K–type giant stars that are radial velocity

standards were obtained on some of the nights on which ι Her was observed. For

each standard, Table 8 shows the published values of the radial velocity taken from

The Astronomical Almanac (1992) and the number of observations.

Table 8: Radial Velocity Standards

Standard Published Velocity (km s−1) # of Observations

α Boo – 5.3 ± 0.1 15

β Oph –12.0 ± 0.1 2

α Cas – 3.9 ± 0.1 4

α Tau 54.1 ± 0.1 1

ε Peg 5.2 ± 0.2 1

ε Leo 4.8 ± 0.1 2

To verify that these stars are stable radial velocity standards, a detailed

literature search was conducted in the SIMBAD astronomical database. Of the 6

standards, only α Cas and ε Peg had no reported evidence of velocity variations in

the database. In all of the remaining stars, the intrinsic velocity variations were

extremely small with the exception of α Boo. Because α Boo was (by far) the most

commonly observed standard star in this work, had the largest reported velocity

variation of the standards, and was the only standard whose velocity variation was

detected by 2 or more independent groups, it is important to consider it in detail.
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Table 9: Reported RV Variability in α Boo

Period (days) Amplitude (m s−1) Reference(s)

2 200 Smith, McMillan & Merline 1987
Cochran 1988

Innis et al. 1988

2.46 54 Hatzes & Cochran 1994

4.03 30 Hatzes & Cochran 1994

8.52 14 Hatzes & Cochran 1994

11.6 60 Belmonte et al. 1990

223 500 Hatzes & Cochran 1993

The variability that is described in Table 9 has periodicities and amplitudes

that may (if they are real) affect our observations of α Boo. Because the derived

observational error depends heavily upon the observations of α Boo, it is a

conservative upper limit for the true observational error.

The errors were estimated from measuring 5 Fe I lines in each of the radial

velocity standards using the method described above in Section 2.1 The wavelengths

of these lines (Moore 1959) are λλ5445.045, 5455.613, 5461.540, 5466.404, and

5466.993. Since they occur in the small region where the blue and red observations

overlap, the wavelength errors that arise from the wavelength–calibration part of

the reduction will affect the Fe I lines in the same manner that they affect the S

II (6) λ5454 line. This error estimate therefore applies to both the blue and red

observations.

Inspection of the 5 Fe I lines in a spectrum of α Boo (Image No. 940513.014)
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reveals that they are relatively weak lines in the giant spectra with an average

FWHM of about 0.27A and an average residual intensity of 0.6 in normalized

flux. The S II line in ι Her has an almost identical FWHM (0.28Å in image No.

940609.016) and a typical residual intensity of 0.8 in normalized flux. Thus, the Fe

I lines in the giant spectra are similar in strength and shape to the S II line in the

ι Her spectra and, therefore, should yield a similar uncertainty in the measurement

of radial velocities.

Table 10 lists the mean heliocentric radial velocity based on the 5 Fe I lines

(called V in the table) and the standard deviation of the 5 values about the mean

(called σ in the table) for each spectrum of the radial velocity standards. Three

observations yielded heliocentric radial velocities that are drastically different from

the published values; these observations are marked with * and were not used to

compute errors.

The radial velocities in Table 10 can be used in two ways to compute the error

in the radial velocity measurements. One method is to compute the rms deviation

of the measured heliocentric radial velocities from the published values given in

Table 8. The standard deviation calculated in this manner gives 0.5 km s−1 as the

error. The second method, which is to compute the rms deviation of the measured

heliocentric radial velocities from their mean, is described below. Table 11 gives the

mean value and rms deviation of the radial velocities (V) from Table 10, calculated

separately for each standard.

The standard deviations in Table 11 form an average (weighted by the number

of observations of each standard) that gives the error based on the mean velocity of

5 lines; to compute the error based on the measurement of just 1 line, this weighted

average is multiplied by the square root of 5. The error in the measurement of 1 line,

calculated in this manner, is 0.7 km s−1. Because of the intrinsic variations known
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Table 10: Measurements of Radial Velocity Standards

Image No. V (km s−1) σ (km s−1)
α Boo

940628.001* – 3.43 0.70
940731.007* – 4.34 0.66
940513.014 – 5.31 0.46
940520.017 – 5.32 0.70
940521.017 – 5.43 0.56
940528.012 – 5.27 0.55
940529.004 – 5.50 0.47
940607.012 – 5.24 0.60
940609.014 – 5.51 0.45
940610.001 – 5.17 0.63
940611.012 – 4.77 0.56
940701.011 – 5.10 0.70
940711.022 – 5.52 0.45
950303.022 – 5.58 0.52
950311.004 – 5.93 0.56

β Oph
940630.012 –11.16 0.74
940904.018 –12.96 0.75

α Cas
940817.027 – 3.53 0.64
940908.021 – 3.43 0.48
940930.024 – 3.41 0.62
941111.030 – 4.25 0.68

α Tau
940206.010 54.05 0.90

ε Peg
940811.016* 2.97 0.40

ε Leo
950303.030 3.86 0.96
950304.033 3.99 0.99

to occur in α Boo, this figure should be considered as a conservative upper limit to

the true observational error. Correcting for the best confirmed intrinsic variation in

α Boo (period=2 days, amplitude=200 m s−1) yields an error of 0.5 km s−1. The

intrinsic variations in α Boo are likely to be due to radial pulsations and some

researchers have suggested that α Boo is changing radial pulsation modes on time

scales of a few years (Hatzes & Cochran 1994).

The two methods described above agree with each if one takes into account

the intrinsic velocity variations that have been observed in α Boo. Because of the
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Table 11: Determination of Radial Velocity Observational Error

Mean (V) σ(V)
Standard Number in km s−1 in km s−1

α Boo 13 – 5.36 0.27

β Oph 2 –12.06 ...

α Cas 4 – 3.65 0.35

α Tau 1 54.05 ...

ε Leo 2 3.92 ...

uncertainties introduced by the intrinsic velocity variability in α Boo, 0.7 km s−1

will be taken as the estimate for the observational error in the radial velocity

measurements (conservative though it may be).
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2.4. S II (6) λ5454 HRV

This section presents the heliocentric radial velocities of the S II λ5454 line based

on the observed wavelengths as measured with the method described in Section 2

Figure 2 shows the HRV curve; notice the clear variation that is due to the orbital

motion of ι Her. In the remainder of this work, any references to velocity or radial

velocity refer to heliocentric radial velocity.

Table 12: The S II (6) λ5454 HRV

HJD (2449000.+) HRV (km s−1) HJD (2449000.+) HRV (km s−1)
389.9589 -18.5 574.7255 -22.0
444.8891 -20.9 581.5824 -21.3
485.7911 -23.1 581.6024 -22.0
490.7673 -24.3 581.6204 -21.8
490.7784 -25.3 581.6386 -22.1
491.7902 -21.7 581.6579 -22.2
492.7008 -18.2 581.6947 -21.9
493.7967 -22.7 594.7509 -30.1
495.7611 -17.3 594.7644 -30.8
500.7418 -16.8 599.5956 -26.7
501.7119 -18.7 599.6268 -27.3
501.7201 -18.3 599.6804 -26.2
501.7293 -19.6 603.5936 -21.4
506.7050 -17.0 603.6183 -21.4
510.7306 -15.7 603.6427 -21.3
510.7469 -15.8 603.6907 -21.1
512.6654 -13.5 613.5981 -18.4
513.7287 -16.9 625.5192 -15.8
514.6642 -15.8 625.5432 -15.3
531.6722 -12.7 625.5670 -15.6
533.6473 -16.2 625.5906 -15.9
534.6291 -13.0 625.6147 -15.6
544.6914 -17.2 625.6405 -16.3
564.5899 -18.7 653.5462 -15.0
564.6800 -19.8 653.5690 -15.5
564.7043 -20.1 667.5150 -17.4
564.7286 -19.9 778.9597 -20.2
564.7530 -20.9 779.8612 -18.8
564.7711 -20.7 786.9398 -19.1
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Fig. 2.— The HRV of S II (6) λ5454.
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Stamp



27

2.5. The HRV of Other Absorption Lines

In order to test whether or not the radial velocity variations in S II λ5453.810 are

representative of the variations that the star undergoes, the radial velocities of this

S II line were compared to the velocities based on 8 other absorption lines of similar

strength, measured by the same method. The error in the velocity measurements of

these 8 lines is assumed to be the same as that estimated for S II λ5454 in Section

2.3 For each of these 8 lines, the measured radial velocities were subtracted from

the S II λ5454 radial velocities. The mean (∆V) and standard deviation about the

mean (σ) of this difference, and the linear correlation coefficient (R) were calculated.

Table 13 gives the results.

Table 13: Comparison of the S II HRV to that of Other Lines

Line Identification ∆V(km s−1) σ(km s−1) R

Si III λ4568 blue 14 1.5 0.7 0.969

S II λ5474 blue 26 1.0 0.5 0.982

S II λ5429 red 1 1.1 1.5 0.972

S II λ5433 red 2 0.6 1.8 0.962

S II λ5565 red 4 0.7 1.3 0.980

S II λ6347 red 9 1.0 0.7 0.994

Ne I λ6402 red 12 1.2 0.8 0.993

C II λ6578 red 14 0.5 0.7 0.994

The results from Table 13 show that the radial velocities based on S II λ5454

are consistently larger than those based on other lines by an average of 1.0 km s−1.

This shift may indicate that S II λ5454 is blended or that the rest wavelength given

by Moore is incorrect (or both). The line asymmetry data given in Section 3.3 show

that the average value of the line asymmetry is essentially zero (1 × 10−5Å); this
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indicates that the systematic difference is due not to blending but to an incorrect rest

wavelength. Then, the rest wavelength of the S II line is too large by approximately

0.018Å and the correct rest wavelength is 5453.792Å. An important implication

of this result is that the orbital element γ, the radial velocity of the center of the

binary’s mass, will be too large by an amount of 1.0 km s−1. Because any errors

in the assumed rest wavelength of the S II line will be absorbed into the derived

value of γ. The residual velocities will be unaffected by use of the incorrect rest

wavelength.

Five of the eight lines listed in Table 13 display a standard deviation that is

virtually all accounted for by the observational error of 0.7 km s−1 (refer to Section

3.3); these lines are Si III λ4568, S II λ5475, S II λ6347, Ne I λ6402, and C II λ6578.

This and the fact that the correlation coefficients are near 1.0 for all of the lines

implies that these lines participate in the same velocity variations that the S II line

exhibits. Thus, the velocity variations detected in the S II line are representative

of those based on Si III, Ne I, C II, and other S II lines; the Si III comparison line

has been used as an indicator of pulsation prior to this work (Smith 1978). The

remaining three comparison lines show a large scatter; these three S II lines are

among the weakest of the eight velocity comparison lines and therefore may be more

affected by noise in the continuum.
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Table 14: The HRV of Other Lines in the Blue Region

HRV (km s−1)
HJD Si III λ4568 S II λ5474

531.6722 –17.4 –12.2
533.6473 –21.5 –17.1
564.5899 –23.0 –20.0
564.6800 –24.3 –20.9
564.7043 –24.9 –21.1
564.7286 –25.3 –20.6
564.7530 –25.9 –21.0
564.7711 –24.7 –22.4
581.5824 –25.0 –23.7
581.6024 –28.2 –22.9
581.6204 –25.9 –23.3
581.6386 –25.9 –22.7
581.6579 –26.8 –23.2
581.6947 –28.0 –22.9
603.5936 –24.4 –22.5
603.6183 –26.2 –22.8
603.6427 –25.6 –22.9
603.6907 –26.7 –22.5
625.5192 –20.1 –16.8
625.5432 –20.7 –16.1
625.5670 –20.0 –16.9
625.5906 –21.0 –16.3
625.6147 –20.7 –16.9
625.6405 –20.1 –16.9
653.5462 –19.5 –16.2
653.5690 –20.3 –16.8
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Table 15: The HRV of Other Lines in the Red Region

HRV (km s−1)
S II S II S II S II Ne I C II

HJD λ5429 λ5433 λ5565 λ6347 λ6402 λ6578
389.9589 –19.81 –19.56 –17.94 –18.45 –18.98 –19.33
444.8891 –20.14 –20.30 –20.49 –20.90 –21.09 –20.33
485.7911 –25.03 –24.74 –24.88 –25.86 –25.66 –24.76
490.7673 –24.71 –25.64 –24.30 –25.28 –25.57 –25.28
490.7784 –24.44 –25.36 –23.71 –26.38 –26.09 –25.25
491.7902 –22.53 –21.42 –22.45 –22.92 –22.89 –22.10
492.7008 –18.55 –18.57 –18.12 –19.28 –19.08 –18.99
493.7967 –23.31 –22.36 –21.50 –22.98 –23.85 –22.98
495.7611 –18.66 –17.37 –18.17 –18.48 –18.35 –17.29
500.7418 –17.46 –17.72 –17.23 –18.67 –18.78 –19.12
501.7119 –18.96 –19.29 –17.82 –19.67 –19.00 –18.66
501.7201 –18.04 –18.04 –22.10 –19.84 –19.54 –18.75
501.7293 –22.98 –18.95 –20.49 –18.75 –18.36 –18.93
506.7050 –18.27 –17.35 –20.12 –17.71 –17.85 –17.38
510.7306 –17.51 –15.41 –19.22 –16.73 –17.54 –16.22
510.7469 –24.04 –16.29 –14.96 –16.94 –17.22 –16.35
512.6654 –14.68 –14.33 –13.89 –14.78 –15.30 –14.32
513.7287 –16.67 –16.82 –17.81 –18.88 –18.14 –17.59
514.6642 –17.12 –16.61 –15.55 –17.30 –17.37 –16.53
534.6291 –13.42 –13.38 –13.63 –13.49 –14.24 –13.77
544.6914 –18.54 –15.27 –17.16 –17.10 –18.07 –16.83
574.7255 –22.61 –22.27 –22.94 –22.31 –23.13 –22.80
594.7509 –30.73 –31.59 –30.79 –31.92 –32.82 –30.90
594.7644 –30.81 –31.09 –30.51 –31.92 –32.57 –31.35
599.5956 –27.37 –36.67 –28.05 –27.73 –28.29 –27.04
599.6268 –27.39 –27.48 –28.62 –27.22 –27.50 –26.68
599.6804 –28.15 –26.62 –27.67 –27.34 –27.44 –26.48
613.5981 –20.00 –19.77 –18.99 –19.98 –20.91 –20.05
667.5150 –17.94 –17.48 –18.89 –17.75 –18.99 –17.42
778.9597 –20.76 –20.84 –20.47 –20.52 –20.38 –20.14
779.8612 –20.49 –19.86 –22.04 –19.99 –20.42 –20.40
786.9398 –20.09 –19.50 –19.83 –21.07 –20.75 –20.75
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3. Equivalent Width & Line Asymmetry Measurements

The equivalent width (Wλ) and line asymmetry of S II λ5454 were measured in order

to describe the nature of periodic variations in the radial velocity of the S II line; for

example, are the observed velocity variations accompanied by detectable changes in

equivalent width?

Equivalent width (Wλ). The equivalent width of an absorption line is defined to

be the width of a column that extends from the zero flux level to the local continuum

such that the area in the column is equal to the area between the local continuum

and the line profile divided by the flux of the local continuum. When the flux scale is

normalized such that the local continuum flux is set to a value of 1.0, the equivalent

width is equal to the area between the local continuum and the line profile and

therefore is a measure of the line strength.

Line asymmetry. The line asymmetry parameter used in this work (hereafter

simply called the “line asymmetry”) is defined in the following manner:

Line Asymmetry = Wλ(lhs) – Wλ(rhs)

where the Wλ(lhs) is the contribution to the total equivalent width from the portion

of the line profile to the left hand side of the wavelength of minimum flux and

Wλ(rhs) is the contribution from the portion of the line profile that is to the right

hand side. This approach has been used in the study of line profile variations in

classical Cepheids (Sabbey et al. 1995).

3.1. Description of the Method

The Wλ’s and line asymmetries were calculated in the following manner. The spectra

of ι Her were continuum normalized by a 3rd degree spline fit using the standard
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IRAF routine CONTINUUM, and the wavelength of minimum flux was determined

in the manner described in Section 2.1 Then, the values of Wλ(lhs) and Wλ(rhs)

were determined from a numerical integration using a trapezoidal rule from the

wavelength of minimum flux to the left and right hand terminus of the absorption

line profile. The left hand terminus of the line, for example, was determined in the

following interactive manner.

The plot of enclosed equivalent width versus wavelength was displayed on a

computer screen, where the ‘enclosed equivalent width’ refers to the area contained

within the line profile as integrated from the wavelength of minimum flux to a

particular wavelength. The left hand portion of the line profile was then overplotted

on the computer screen.

As one starts at the wavelength of minimum flux and integrates toward the

left side of the line profile, the enclosed area (i.e. enclosed Wλ) increases. But when

the integration is carried past the left hand terminus of the line profile and into

the surrounding noise, the enclosed area no longer increases or decreases due to

cancellation of the positive and negative noise peaks. Thus, by locating where the

enclosed area flattens out, one is locating the terminus of the line profile; the value

of Wλ(lhs) is then the value of the enclosed area at the point where is flattens out.

By simultaneous inspection of the left hand side of the line profile and the

value of the enclosed area at points along the profile, a very accurate determination

was made of the left hand terminus of the line profile and, therefore, Wλ(lhs). This

method largely removed one of most problematic uncertainties that are inherent in

equivalent width measurements: the placement of the integration limits.

The measurement was repeated for the right hand portion on the S II line;

resulting in the measurement of Wλ(rhs). The Wλ and line asymmetry were then

determined.
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3.2. Estimation of the Observational Error

The measurements described in this section depend upon the accurate placement of

the local continuum around the S II λ5454 line and also on the photon or shot noise.

In the literature, a canonical value for the error (around 10%) is usually assigned

to equivalent widths and other measurements that depend upon the continuum

placement. The region around the S II line is free of features that may contribute to

errors in the continuum placement (eg. broad lines/wings of Balmer lines and He I,

telluric absorption lines from water, interstellar lines, nearby strong absorption lines,

etc...). For this reason and because of the high quality of the observations (average

SNR around 100), this author suspected that the canonical value of ± 10% may

overstate the errors caused by continuum placement.

In order to calculate the uncertainty in these measurements due to the

placement of the continuum, the following method was employed. For 5 randomly

selected observations in the blue and 5 randomly selected observations in the red,

the full width (W) of the S II line at the continuum was measured in the normalized

spectra (Fc was assumed to be 1). The continuum was then raised and lowered in

these observations until (by inspection) it was obvious that the continuum was too

high and too low. The amount that the continuum was raised and lowered was

recorded as E+ and E–; the average uncertainty in the continuum placement is

then given as E = 0.5(E+ + E–). The iraf routine CONTINUUM only considers

fluxes within 2 standard deviations of their local continuu in the normalization; with

the average SNR = 100, the maximum value of E should be around 0.02 units of

normalized flux. The values of E that were obtained from inspection are all below

the expected upper limit.

The values W, Fc, E, and the equivalent widths (Wλ) were used to estimate the

uncertainty in the Wλ measurements. The following formula (derived in Appendix
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B) was used to estimate the uncertainty in the measurements due to uncertainty in

the placement of the continuum.

d(Wλ) = ( E / Fc ) [ W – Wλ ]

For the 5 observations in each region, the individual uncertainties were used to

compute the average uncertainty. The final estimate for the uncertainty in the Wλ

was calculated as the mean (weighted by the total number of observations in each

region) of the average uncertainty determined for each region. The uncertainty,

calculated in the this manner, was found to be 0.006Å. This value is taken as the

uncertainty in all Wλ measurements caused by continuum placement; notice that

this value is very close to the canonical value of 10%. To first order, and under

the assumption of symmetric integration limits, the uncertainty in the continuun

placement does not affect the line asymmetry measurements.

Table 16: Uncertainty in Wλ

HJD W(Å) E+ E– Wλ(Å) d(Wλ) (Å)
Blue

531.6722 0.745 0.027 0.006 0.055 0.011
533.6473 0.622 0.015 0.007 0.059 0.006
564.5899 0.646 0.014 0.002 0.060 0.005
581.6024 0.849 0.009 0.004 0.059 0.005
603.6907 0.602 0.007 0.013 0.064 0.005

Red
490.7673 0.469 0.009 0.009 0.060 0.004
491.7902 0.574 0.009 0.011 0.060 0.005
510.7306 0.603 0.014 0.007 0.060 0.006
667.5150 0.532 0.012 0.013 0.062 0.006
778.9597 0.590 0.010 0.010 0.060 0.005

IN addition to the continuum placement, photon noise may contribute to

errors in the Wλ measurements and is the dominant cause of error in line asymmetry

measurements. The effect of photon noise depends critically upon the shape and

strength of the absorption line being measured and the number of data points

that make up the line. In order to test this effect, 1000 synthetic line profiles of
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the S II line were created with photon noise added. The lines were modeled by a

gaussian shape with a Wλ and residual intensity (RI) equal to 0.62Å and 0.2 units

of normalized flux, similar to the average values for S II λ5454. The signal–to–noise

ratio at the continuum (SNRc) was assumed to be 100. The magnitude of the

photon noise as a function of normalized flux (F) was determined by the following

model: magnitude of the noise =
√

(F ) / SNRc and the noise spikes had equal

likelihoods of being positive, negative, and zero. The line profiles were sampled by

11 points (just enough to include the line) at the dispersion of 0.05 Å per data point

(which closely approximates the dispersion of the spectra around the S II line). The

Wλ of the 1000 synthetic lines were measured giving a standard deviation about the

mean (an estimate for the observational error due to photon noise) of 0.001Å.

The total uncertainty in the Wλ is the sum, in quadrature, of the uncertainties

due to continuum placement and photon noise while photon noise represents the

uncertainty in the line asymmetry measurements. The total uncertainty in Wλ is

dominated by the uncertainty due to continuum placement and is equal to 6mA;

this value will be taken as the observational error in the Wλ and line asymmetry

measurements.
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3.3. Measurements of S II (6) λ5454

The equivalent width and line asymmetry of the S II λ5454 line were measured

with the method described in Section 3.1. Table 17 shows the results; recall that

the observational error associated with the Wλ measurements is 0.006Åand that

associated with the line asymmetries is 0.001Å.

Table 17: Wλ and Line Asymmetry Measurements of S II λ5454
Line Line

HJD Wλ(Å) Asymmetry (Å) HJD Wλ(Å) Asymmetry (Å)
389.9589 0.068 –0.001 574.7255 0.058 0.000
444.8891 0.085 0.003 581.5824 0.061 0.007
485.7911 0.061 0.001 581.6024 0.059 0.001
490.7673 0.060 –0.002 581.6204 0.057 0.003
490.7784 0.061 0.002 581.6386 0.057 0.002
491.7902 0.060 –0.002 581.6579 0.059 0.003
492.7008 0.064 0.002 581.6947 0.054 0.002
493.7967 0.062 –0.003 594.7509 0.058 0.000
495.7611 0.059 –0.003 594.7644 0.056 0.003
500.7418 0.059 0.003 599.5956 0.058 –0.002
501.7119 0.063 –0.002 599.6268 0.060 –0.003
501.7201 0.063 –0.002 599.6804 0.062 0.000
501.7293 0.061 –0.009 603.5936 0.058 0.000
506.7050 0.063 –0.002 603.6183 0.060 –0.002
510.7306 0.060 0.002 603.6427 0.059 –0.001
510.7469 0.064 0.000 603.6907 0.064 –0.002
512.6654 0.065 –0.002 613.5981 0.057 0.000
513.7287 0.059 0.003 625.5192 0.060 –0.004
514.6642 0.060 0.003 625.5432 0.061 0.000
531.6722 0.055 0.003 625.5670 0.062 –0.002
533.6473 0.059 0.001 625.5906 0.061 –0.002
534.6291 0.061 –0.003 625.6147 0.056 0.001
544.6914 0.059 –0.006 625.6405 0.058 –0.005
564.5899 0.060 0.002 653.5462 0.059 0.001
564.6800 0.061 0.001 653.5691 0.060 –0.002
564.7043 0.059 0.000 667.5150 0.062 0.000
564.7286 0.062 –0.002 778.9597 0.060 –0.003
564.7530 0.061 –0.001 779.8612 0.062 0.004
564.7711 0.059 –0.003 786.9398 0.063 0.001

The Wλ values show variations from 0.056 Å to 0.064 Å; thus the range

of variations seen (0.008 Å) is only slightly larger than the uncertainty in the

measurements (0.006 Å). Because of this, caution should be used in interpreting

variations seen in the Wλ measurements. The line asymmetry is very small,
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indicating that the S II λ5454 line is fairly symmetric. Because of the small values

of the line asymmetry parameter, it will not be used to study pulsations that occur

in ι Her.



Chapter 4

Data Analysis

1. Determination of the Orbit

Iota Her is the primary star in a single–lined spectroscopic binary. The orbital

elements have been derived by previous investigators (Abt & Levy 1978). Kodaira

(1971) estimated the orbital period, γ, and K. In order to study pulsation in ι Her

through their effect on the observed HRV of absorption lines, one must subtract out

the radial velocity variations that are caused by the star’s motion in its binary orbit.

Previous determinations of the binary orbit have, however, been somewhat less than

definitive for the following reasons.

(1) The previous determinations of the orbit used data that did not completely

cover all phases of the orbit; these data are usually sparse and are taken from many

different epochs of the orbit. For example, Abt & Levy (1978) attempted to use

20 spectra taken over 5 orbital cycles in their determination. They had to combine

their data with previously published data (Petrie & Petrie 1939) in order to have

complete phase coverage of the orbit.

(2) The radial velocity measurements upon which the previous orbit determinations

38
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were less precise than the present data set. For example, the standard error (s.e.) in

the radial velocity measurements used by Abt & Levy (1978) ranges from a standard

error (s.e.) from 0.9 km s−1 to 2.2 km s−1 while the mean standard error in the radial

velocity measurements used by Kodaira (1971) is 1.0 km s−1. The observational

error of the present radial velocity data is only 0.7 km s−1 (Chapter 3, Section 2.3).

(3) The previous orbit determinations do not take into account the fact that

pulsations in a star like ι Her can contribute to radial velocity variations. Because

the times cale of pulsations in B stars is short compared to a typical orbital period,

it is often assumed that the pulsational contributions to radial velocity variations

will average out in such a way that they do not affect the orbit determination. In

the case of ι Her, however, these assumptions are not valid for two reasons: the

amplitude of radial velocity variations due to pulsation is comparable to that which

is due to the binary orbit; and the fact that ι Her is known to be multiperiodic with

non–radial pulsation modes makes it possible that the radial velocity variations of

two modes with similar periods can produce a beat velocity variation whose period

is a significant fraction of the orbital period.

Calculation of the Binary Orbit

The binary orbit was calculated using an iterative process that takes into

account the dominant residual velocity variation as well as the velocity variation

due to the orbital motion of ι Her about the center of mass of the binary system;

the term “residual” will be used often in this thesis and will refer to the data set

after the orbital velocity variations have been subtracted out (i.e. prewhitened for

the orbit). Below are basic definitions of quantities that describe the orbit of a

single–lined spectroscopic binary with respect to the center of mass:

P = The orbital period.

γ = The radial velocity of the center of mass of the binary system.
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K = The half–amplitude of the radial velocity variations caused by the motion of

the primary in its binary orbit.

e = The eccentricity of the orbit.

Ω = The longitude of the periastron.

To = The time of periastron passage, any date when the primary is at periastron.

Periastron = The time when the primary is closest to the center of mass (and to the

secondary as well).

i = The inclination of the binary orbital plane with respect to the plane of the sky; i

= 90o means that the line of sight (l) coincides with the plane of the orbit.

a1sini = The projection of the semi–major axis of the primary’s orbital motion on

the line of sight.

f(m) = The mass function, which depends on i, the mass of the primary (m1), and

the mass of the secondary (m2).

The following method that was used to calculate the binary orbit.

Step 1) Calculate the least–squares orbital solution based on the unaltered radial

velocities of the S II line. This orbital solution is called the iteration 0 solution.

Step 2) Prewhiten the data for the radial velocity variations predicted by the orbital

solution from Step 1. Determine the period of the dominant velocity variation in the

residual using a Lomb periodogram (refer to Appendix A). The spacing in all Lomb

periodograms used in this work is 0.024d, giving an uncertainty in any one period of

± 0.012d.

Step 3) Begin an iterative process as described below.

Step 3.1) Fit a least-squares Fourier–harmonic series to the dominant period in the

residuals. The first time that this is done, the fit is called the iteration 0 fit.

In all ‘Fourier–harmonic’ fits described in this work, the series is fitted to a
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function of the variable (X) where X = MOD[2π (HDJ-HDJo)/Period] - 0.5; the

value of HDJo is arbitrary and was taken as the HJD of the earliest observation

(HJD 389.9589) unless otherwise noted. The form of the fitted function is as follows:

Fit = 0.5 A0 + A1cos(X) + B1sin(X) + ... + Ancos(nX) + Bnsin(nX)

The series was carried out to the number of terms (n) that minimized the variance

in the residuals about the series. The harmonic terms were included to take into

account the fact that pulsations in some stars (e.g. classical Cepheids) are observed

to have a form that includes harmonics (i.e. they are not sinusoidal); the residual

radial velocities in ι Her will also prove to be non–sinusoidal.

Step 3.2) Subtract the fit obtained in Step 3.1 from the radial velocities of the S II

line.

Step 3.3) Calculate a new least–squares orbital solution on the data set obtained

in Step 3.2.

Step 3.4) Prewhiten the radial velocities of the S II line by the new orbital estimate

obtained in Step 3.3.

Step 3.5) Repeat the process (i.e. go back to Step 3.1) until the variance in the

radial velocities of the S II line (prewhitened by the orbital solution and then

prewhitened by the fit to the dominant residual period) is minimized.

The preceding iterative method works in the following manner. The form of

the dominant residual variation is approximated by a Fourier–harmonic series. When

this is subtracted from the S II radial velocities, the orbital radial velocity variations

become less obscured by the residual variations. This allowed for a more precise

determination of the binary orbit solution; subtracting this more precise orbit from

the data made the residual variations less obscured allowing its form to be better



42

determined. The process continues in this manner, each iteration simultaneously

giving a more precise fit to the orbit and the residual variation. The least–squares

solution is achieved when the orbit solution combined with the fit to the residual

variation (here 3.86d) minimizes the variance (i.e. the least–squares solution is the

one where the value of ∇2 in Table 18 is a minimum).

The calculation of the least–squares binary orbital solutions that is described

in Steps 1 and 3.3 was performed with the FORTRAN code described by Wolfe et

al. (1967). The numerical method used by the code is a Wilsing–Russell method

(modified to work for both high and low eccentricity orbits) followed by a differential

correction. The code requires (besides a set of radial velocities) only an initial guess

for the period; for the iteration 0 orbit solution, the period determined from Abt

& Levy (1978) was used as the initial period and for other iterations, the period

determined from the past iteration was used.

For each iteration of the above–described process, the following items were

calculated: the orbital elements, the period of the dominant residual variation, the

amplitude and phase associated with this period (taken from the fundamental term

in the Fourier–harmonic series), the variance after the S II radial velocities were

prewhitened for the orbital solution (called ∇1 in Table 18), and the variance after

the S II radial velocities were prewhitened for both the orbital solution and the fit to

the dominant residual period (called ∇2 in Table 18). Table 18 shows these values

(with the standard errors omitted for the orbital elements). The amplitudes and

phases in Table 18 and in the rest of this work come directly from the fundamental

component of the Fourier-harmonic fit and are rendered in the following manner:

Fundamental Fit = Amplitude × cos(X–Phase)

where X has been previously defined and the amplitude and phase are related to the
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A1 and B1 coefficients from the Fourier–harmonic series by the following.

Amplitude =
√

A2
1 + B2

1

Phase = arctan B1/A1

In order to illustrate how the iterative process works, it is followed through

iteration 0. Figure 3 shows the orbit determined from the unaltered data (iteration

0), compared to the observed radial velocities of S II as a function of orbital phase

instead of time. Figure 4 shows the observed radial velocities prewhitened by the

radial velocity variations predicted by the initial orbit solution. Notice that the

residuals show scatter well beyond that expected from the observational error of

0.7 km s−1 (as indicated by the error bars). Figure 5 shows the periodogram of

the residuals from the initial orbit. The peak at 3.864d is the strongest peak in

the periodogram indicating that a 3.864d variation is the strongest overall in the

data. In all iterations of the orbit solution, the dominant residual variation had

this period. Finally, Figure 6 shows the residuals from the initial orbit phased to

a period of 3.864d. The Fourier–harmonic fit (using 3.86d as the fundamental) is

overplotted. The fit that is displayed in Figure 6 was subtracted from the radial

velocities to provide the data set upon which the iteration 1 orbit was determined.

Table 18 shows that the iterative technique of accounting for a residual

velocity variation works extremely well, converging rapidly. The best solution is

the one that minimizes the value of ∇2, thus the iteration 3 solution best fits

the data. The iterative process cut the variance of the data about the combined

orbit+Fourier–harmonic fit almost in half with most of the reduction resulting

from an improved fit to the 3.864d residual period. A welcome outcome of the

iterative process was that the fit to the orbit was better in the final solution

(iteration 3) than it was in iteration 0 (albeit by only 5% in terms of the reduction

in variance); apparently the more accurate description and removal of the residual
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Fig. 3.— The initial orbit phased and compared to the observed S II HRV curve.

variation enabled the orbit determination program to find a better solution in the

6 dimensional parameter space. It is also evident that taking into account the

dominant residual velocity variation did affect the orbit determination, particularly

the derived period and the velocity semi–amplitude (K); refer to Figure 7 for a visual

comparison of the final orbit to the initial orbit determination. In the remainder of

this work, the final orbit is the iteration 3 solution.

The comparison of the S II radial velocities to other lines (Chapter 3, Section

2.5) suggests that γ is too large by a value of 1.0 km s−1. If this is correct, then the

final value of γ (–19.9 km s−1) should be –20.9 km s−1. Hereinafter, the final value of

γ will be given as –19.9 (–20.9) km s−1 to indicate the possibility that γ calculated
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Fig. 4.— The residuals From the initial orbit.

from the S II HRV may be too large. The calculated value of γ (–19.9 km s−1) will

be the value used whenever the radial velocity data set is prewhitened for the final

solution to the binary orbit.

Table 19 compares the final orbital elements to those calculated by Abt & Levy

(1978) and Kodaira (1971). The standard errors (s.e.) (i.e. the 1 σ uncertainties) are

also given. Figure 8 shows the radial velocity variations predicted by the final orbit

in comparison to those predicted by the Abt & Levy (1978) orbit determination.

There is general agreement between the final orbit computed for this work and the

results of Abt & Levy (1978) and Kodaira (1971).

The final orbital elements can be used to determine properties of the binary
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Fig. 5.— The periodogram of the residuals from the initial orbit.

system. The mass function, f(m), equals 0.0027 solar masses and the projection of iota

Her’s semi–major axis, a1sini, equals 14.31 solar radii. Under normal circumstances,

no further information can be obtained about a single-lined spectroscopic binary

like ι Her due to the unknown inclination angle. For ι Her however, the non-radial

pulsations that it undergoes can yield information about its orbital inclination.

Smith (1978), for example, found that line profile fitting suggested an inclination

for the star’s rotational axis of approximately 90o. Smith (1978) also takes that the

mass of the primary star in ι Her to be around 8 solar masses, close to that of 7 solar

mass star 53 Per (Stothers 1972), based on photometric and spectral–type similarity

to the star 53 Per. Assuming that rotational and orbital angular momentum vectors
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Fig. 6.— The initial orbit residuals phased to 3.864d and fitted to a Fourier–harmonic

series.

are aligned and adopting the mass suggested by Smith (1978) yields a mass for the

secondary (m2) of 0.65 solar masses and a semi–major axis for ι Her (a1) of 14.31

solar radii.

Mathias and Waelkens (1995) have recently questioned whether or not ι Her is

actually a binary, suggesting that the periodic motion attributed to the binary orbit

by Abt & Levy (1978) and Kodaira (1971) is actually due to beating among closely

spaced non–radial pulsation modes. In this author’s opinion, it is evident that ι Her

is, indeed, a spectroscopic binary for at least two reasons. Orbit determinations have

been made by three independent researchers (or groups): Kodaira in 1971, Abt &

ndm
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Table 18: Orbital Solutions From Iterative Process

Iteration Number
Quantity 0 1 2 3 4

Period (days) 113.07 112.21 112.37 112.36 112.33
γ (km s−1) –19.3 –19.6 –19.7 –19.9 –20.0
K (km s−1) 5.2 6.4 6.5 6.4 6.4
e 0.36 0.37 0.38 0.38 0.38
Ω (o) 248 226 219 218 218
To (HJD 2449000.0+) 267 264 262 262 262
∇1 (km s−1)2 3.45 3.23 3.18 3.28 3.40
Period (d) 3.864 3.864 3.864 3.864 3.864
Amp (km s−1) 2.4 2.2 2.1 2.1 2.1
Phase (rad) 0.154 0.249 0.246 0.257 0.259
∇2 (km s−1)2 2.02 1.24 1.19 1.18 1.19

Table 19: A Comparison of Orbit Determinations

Final Orbit Abt & Levy(1978) Kodaira(1971)

Period (days) 112.36 113.804 112.7175
s.e. 0.79 0.016 ...

γ (km s−1) –19.9 (–20.9) –20.0 –19
s.e. 0.2 0.2 ...

K (km s−1) 6.4 5.4 6
s.e. 0.3 0.3 ...

e 0.38 0.43 ...
s.e. 0.04 0.04 ...

Ω (o) 218 201 ...
s.e. 6 8 ...

To (HJD 2449000.0+) 262 203.5 ...
s.e. 2 1.7 ...

Levy in 1978, and this work in 1995. In all three of these cases, the derived orbit

parameters are very similar and often agree with one another within mutual errors

(refer to Table 19 and Figure 8). In the present work, the long term radial velocity

variation (the 112.36d variation that is attributed to the binary orbit) was observed

to exist through the entire data set that spans well over a year; refer to Figure 2. It

is difficult to understand how the 112.36d variation could have remained so stable if

it were due to a beating between two pulsation modes in light of the variability that

is often observed in ι Her (see Table 1).



49

Fig. 7.— A comparison of the final orbit to the initial orbit.
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Fig. 8.— A comparison of the final orbit to the Abt & Levy (1978) orbit. The dashed

line is the Abt & Levy (1978) orbit and the solid line is the orbit determined in this

thesis.
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2. Temporal Changes in Pulsation Modes

2.1. Background Information

One of the outstanding questions regarding pulsations (53 Per–type pulsations in

particular) in early to mid B stars is the question of mode switching / mode growth.

The current theory suggests that significant changes in an active pulsation mode

should only occur on time scales much greater than a month; this is generally true

of β Cep–type pulsations which are often observed to be stable for years to decades,

but 53 Per–type pulsations have been observed to change modes (and amplitudes)

on time scales as short as 1 day (Unno et al. 1989).

Changes in pulsation modes have often been observed in ι Her on many time

scales including a month or less. Mathias & Waelkens (1995), for example, found

that the amplitude of short period variations (1–1.5 hr) in the radial velocity of Si

II lines changed by a factor as much as 4 from night to night. The fact that the

different investigators in Table 1 have found greatly different pulsation periods and

amplitudes based on different data sets also suggests the presence of mode switching,

although it may also be partially explained by multiperiodic behavior (i.e. the

data sets and different types of observations used by different investigators sample

different time scales and/or different pulsation modes).

Perhaps the best example of mode switching in ι Her (prior to this work)

can be seen in the work of Smith (1978). Smith obtained spectra of ι Her during

5 observing runs. For each observing run, he fitted theoretical models of pulsation

modes to the profiles of absorption lines; he adjusted the assumed details of the

pulsation modes until the best fit was obtained. Table 20 lists the modes that he

identified as dominant.

Deriving pulsational properties from line profile fitting (the technique used by
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Table 20: Mode Switching Seen By Smith (1978)

Observing Run Range of Dates Period of Pulsation Mode

Aug 3, 1976 Aug 3: UT 5:04 – 9:02 0.413 d

Mar, 1977 Mar 2 – Mar 4 0.413 d

Apr, 1977 Apr 23 – Apr 25 0.5792d

Jun/July 1977 Jun 30 – July 5 0.5792d

July/Aug 1977 July 27 – Aug 2 0.413 d

Smith 1978) often can be used to derive properties of only the dominant pulsation

mode (Smith and Stern 1979). The term “mode switching” therefore refers to the

situation where the role of dominant mode is transferred from one pulsational mode

to another.

Table 20 shows that there are 51 days between the 2nd and 3rd observing

runs where the mode was observed to switch from 0.413 days to 0.579 days. This

new 0.579 day mode persisted for 74 days – 96 days before switching back to the

0.413 day mode in the 5th observing run. There are 23 days between the 4th and

5th observing run where the 0.579 day mode switched back to the 0.413 day mode.

Thus, Smith’s data suggest that the switching of modes occurs on a time scale of

23 – 51 days, with a given mode persisting for 74 – 96 days. While Smith’s results

suggest time scales, they are not well suited for the study of growth and decay of the

pulsation modes. This problem will be addressed in the next section.
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2.2. Sliding Window Analysis

In order to detect temporal changes in the pulsational characteristics in ι Her, the

following technique was applied. A 30 datapoint wide window was slid along the

radial velocity and Wλ data sets. At each window position, 30 consecutive points

within the data set were analyzed. In the first window position the first 30 of the 58

observations were analyzed, in the second window position the 2nd through the 31st

observations were analyzed, and so on.

At each window position, a Lomb periodogram was calculated; from it the

dominant residual period was found. A Fourier–harmonic series was then fitted to

the dominant period. For each window, the following quantities were calculated:

the variance of the data (∇1), the dominant period, the amplitude and phase in

the fundamental term of the fit, and the variance after the Fourier–harmonic fit is

subtracted (∇2). The radial velocity data set was prewhitened by the final orbit

solution before being analyzed. Thus the variance of the data refers to the variance

in the orbit residuals, and the variance after the Fourier–harmonic fit refers to the

variance after the Fourier–harmonic fit is subtracted from the orbit residuals. Figure

9 and Table 21 show the range of dates, arithmetic average HJD, and HJD at the

midpoint for each window.

Each window covers a range that is typically around 80–100 days, and the

difference between the average HJDs of adjacent windows is typically 3–4 days.

Thus, the sliding window analysis is well suited to detecting the dominant mode in

each window as well as the mode switching suggested by Smith’s 1978 work. Recall

that Smith found that a given pulsation mode was active for 74 to 96 days; this

is just the range of dates covered in 1 window (with the exception of the first 2

and last 3 windows which coincide with large gaps in the data). Smith also found

that switching of pulsation modes occurred on a time scale from 23 to 51 days; this
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Table 21: The 30 Datapoint Wide Windows

HJD (2449000.0+)
Window Average Range Midpoint

1 515.299 184.767 482.342
2 521.686 136.693 513.236
3 526.244 95.8113 533.697
4 529.438 90.8531 536.194
5 532.467 90.8602 536.208
6 535.496 89.8677 536.724
7 538.493 88.9939 537.198
8 541.895 100.954 544.274
9 545.260 99.0033 545.263
10 548.721 98.8538 550.169
11 552.018 97.9149 550.669
12 555.283 97.9603 550.700
13 558.679 101.864 552.661
14 562.075 96.9133 555.162
15 565.307 92.9121 557.187
16 568.405 92.9438 557.219
17 571.834 100.933 563.132
18 575.595 111.791 569.624
19 579.323 110.879 570.104
20 583.019 93.8948 578.620
21 586.150 91.9433 579.619
22 589.216 90.9856 580.122
23 592.249 80.9491 585.166
24 595.878 88.9563 609.068
25 598.844 88.8890 609.125
26 602.272 102.811 616.110
27 609.413 214.231 671.844
28 616.584 215.108 672.307
29 623.991 222.169 675.855

is considerably longer than the difference between the average HJDs of adjacent

windows. Because the average width of a window is approximately the same as the

duration over which a given mode was found to be dominant by Smith (1971), the

results of each window are assumed to apply at the date given by the average HJD;

this is somewhat analagous to the assigning the flux from a broadband photometric

filter to the effective wavelength of the filter (Morrison 1995). At the same time, any

changes in pulsational characteristics that occur on time scales much shorter than

the typical range of 80–100 days will be averaged out by the window analysis.



55

Fig. 9.— The sliding windows used to detect changes in pulsation. The horizontal

lines indicate the width of each window.
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The Radial Velocity Data

Table 22 shows that between the 18th and 19th windows (average HJD 575.595

and 579.323 respectively), the dominant pulsational period switched from 3.86d to

25–26d. The 3.86d mode was observed to decrease steadily in its amplitude from

the first window until the 18th window. Likewise, the 25–26d mode was observed

to increase steadily in amplitude from the 19th window to the last (29th) window.

This behavior is demonstrated in Figure 10. The sliding window analysis also

clearly demonstrates why the 3.86d radial velocity variation is the strongest in the

total data set; it is active in most of the windows (18 of the 29) and its maximum

amplitude is larger than that of the 25–26 day variation. An analysis of the 3.86d

and the 25–26d modes as separate entities will be deferred until the next chapter;

instead, the remainder of this subsection will discuss the changes in the pulsational

characteristics of ι Her that are suggested by the sliding window analysis.
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Table 22: Sliding Window Analysis of Radial Velocity Data

Dominant ∇1 ∇2* Amplitude Phase
Window Period(d) (km s−1)2 (km s−1)2 (km s−1) (rad)

1 3.853 3.05 1.60 2.7 0.964
2 3.853 3.47 1.55 2.8 0.998
3 3.853 3.62 1.29 2.7 0.950
4 3.877 3.41 0.87 2.5 –0.462
5 3.853 3.67 0.84 2.7 0.848
6 3.853 3.87 0.77 2.6 0.848
7 3.877 4.11 0.71 2.5 –0.519
8 3.877 3.62 0.71 2.4 –0.556
9 3.853 3.80 0.79 2.4 0.916
10 3.853 3.48 0.67 2.3 1.114
11 3.853 3.46 0.65 2.3 1.162
12 3.853 3.42 0.58 2.3 1.121
13 3.853 3.57 0.78 2.0 1.132
14 3.853 3.60 0.72 2.2 1.103
15 3.853 3.75 0.75 2.2 1.095
16 3.853 3.94 0.79 2.2 1.084
17 3.853 3.95 0.84 2.0 1.107
18 3.853 3.81 0.95 2.0 1.078
19 25.759 3.75 0.73 2.1 –0.466
20 25.903 3.75 0.72 2.1 –0.700
21 25.807 3.44 0.64 1.9 –0.608
22 25.278 3.44 0.47 2.3 0.599
23 25.278 3.15 0.78 2.2 0.335
24 25.302 3.24 0.67 2.6 0.317
25 25.542 3.20 0.56 2.4 –0.292
26 25.879 3.23 0.40 2.5 –0.853
27 26.047 3.35 0.42 2.5 –1.109
28 25.999 3.35 0.37 2.4 –1.060
29 26.479 3.35 0.39 2.5 1.154

* ∇2 of 0.49 (km s−1)2 is caused by the observational error.
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Fig. 10.— The amplitude of the dominant pulsation periods in the HRV data. The

amplitude that corresponds to dates before HJD 575 is that of the 3.86d pulsation

while the amplitude that corresponds to dates after HJD 579 is that of the 25–26d

pulsation.

It is instructive to compare the time scale of changes seen in the data to those

found by Smith (1978). Recall that Smith found that a given pulsation mode was

dominant for a time scale of 74 – 96 days and that the transition from one mode

being dominant to another mode lasted 23 – 51 days. The results of the sliding

window analysis show that the 3.86d day mode was dominant but decreasing in

amplitude for at least 60 days (the difference in average HJD between the 1st and

18th windows). The 25–26 day mode was dominant but increasing in amplitude for

at least 45 days (the difference in average HJD between the 19th and 29th windows).
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The transition between these two dominant modes occurred as the window moved

from the 18th position to the 19th where the difference in the average HJD for the

18th and 19th windows was just 3.728 days.

Based on the data, it is tempting to speculate that the long–term behavior of

pulsation modes in ι Her is such that the amplitude of modes increase and decrease

over time as power is transferred from one mode to another; this causes the role of

‘dominant’ mode to be passed among a group of unstable modes. The duration of a

given mode’s dominance was estimated by Smith (1978) to be 74 – 96 days, while the

current observations suggest a time scale of at least 45 – 60 days. These time scales

agree to with each other and the orbital period of 112 days within a factor of 2–3.

That these time scales agree with one another suggests that mode switching occurs

at regular intervals and that they be regulated by the binary motion. The possible

relationship between binary motion and mode switching events seen in ι Her will

be discussed in Chapter 5, Section 2 Currently, additional observations of ι Her are

being accumulated in order to follow the development of its pulsational properties.
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The Equivalent Width Data

In this subsection, the sliding window analysis of the equivalent width measurements

of the S II (6) λ5454 line is presented. Only windows where the dominant Wλ

variation has an amplitude greater than or equal to the observational error of 6 mÅ

are shown.

Table 23: Sliding Window Analysis of Wλ Data

Dominant ∇1 ∇2* Amp Phase
Window Period(d) 103 (mÅ)2 103 (mÅ)2 (mÅ) (rad) Comments

1 6.087 0.974 0.900 7 1.146 ...
7 1.019 0.908 0.759 8 0.658 ...
8 2.172 0.902 0.783 10 0.254 ...
9 2.172 0.899 0.719 7 0.065 ...
12 2.172 0.895 0.707 12 0.274 ...
13 2.172 0.891 0.705 12 0.254 ...
14 2.172 0.890 0.709 12 0.250 ...
15 2.172 0.886 0.410 19 –0.556 ...
16 12.956 0.890 0.570 9 0.247 ...
18 0.538 0.877 0.836 6 0.562 ...
19 0.538 0.878 0.829 6 0.563 ...
20 0.538 0.880 0.830 6 0.563 ...
21 6.855 0.885 0.543 7 –0.540 ...
26 2.628 0.882 0.409 20 1.097 alias of 1.588d
27 6.423 0.883 0.447 7 –1.189 ...
28 3.517 0.883 0.675 9 –1.529 alias of 0.80d

* ∇2 of 36 (mÅ)2 is caused by the observational error.

Unlike the radial velocity data, the Wλ variations are largely buried in noise.

The ∇2 variances in Table 23 correspond to observational errors of 20 – 30 mÅ.

Either the error estimate of 6 mÅ is too small by a factor of 3 – 4 or there are

variations (secondary to that caused by the dominant pulsation mode) that appear

as noise to the analysis. The large uncertainties in the Wλ measurements must be

considered in weighing the significance of the results described in this subsection.

Table 23 shows a behavior that is markedly different from that of the radial velocity

data. Whereas the radial velocity data show only two distinct periods (switching

the role of dominant mode between window 18 and 19), the equivalent width data
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show that many different periods take the role of dominant Wλ variation. There is

a fairly strong Wλ variation that was detected in window 26; this variation has an

amplitude of 20 mÅ. The observed period in this window (2.628d ± 0.012) can be

shown to be a 0.997d alias of 1.611d, the importance of which will be discussed in

the next chapter.



Chapter 5

Results

1. Description of Individual Pulsation Modes

The sliding window analysis showed that the radial velocity data set consists of two

distinct subsets (window 1–18 and 19–29), with the dominant mode in each subset

having a period of 3.86d and 25–26 days respectively. The purpose of this section is

to study the two pulsation modes separately.

1.1. The Radial Velocity Data

The 3.86d Pulsation Mode

Only two values of the period are found to be dominant in this subset: 3.853 and

3.877 days. These two values correspond to the same period within the uncertainty

of the periodogram. The 3.853d value appears in 15 out of the 18 windows in the

first subset while the 3.877d value appears in 3 out of the 18 windows. A weighted

average of these values gives 3.857 ± 0.012 days as the value for the pulsation period.

The sliding window analysis also indicates that the period of the 3.86d
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mode is extremely stable, with any variations being less than the spacing of the

Lomb periodogram. The phase that corresponds to the fundamental term in the

Fourier–harmonic fit is also very stable (see Table 22). The phase does deviate from

its ‘normal’ value for the 3 windows where 3.857d was assumed as the fundamental

period; the average phase for these three windows in –0.512 radians. For the other

15 windows, the phase was very stable with an average value of 1.035 radians. This

difference indicates a very sensitive dependence of the phase on the assumed period;

the 0.024d spacing in the periodogram periods gave rise to a ± 1.547 radian error for

the 3.86d period. The weighted average of the phase is 0.777 ± 1.547 radians; this

value is taken as the phase of the 3.86d ± 0.01d period.

The sliding window analysis can also be used to investigate the possibility of

other pulsation modes being active at the same time as the 3.86d period. This point

is best illustrated by examining the variance in the data left over after the orbit and

the fit to the 3.86d period have been subtracted (refer to Figure 11 and in Table 22

refer to the ∇2 column). This variance is very high in the first window (at least

several times that explained by the observational error in the data as estimated in

Section 2.3), but it decreased until window 12 where it reached a point where most

of the variance was accounted for by the observational error. This variance began

to increase again until window 18 where the 24–26d mode became dominant. A

possible interpretation of this behavior is that the excess variance above that due to

the observational error was caused by additional pulsation modes.

During the time interval corresponding to the first 12 windows, a secondary pulsation

mode was active but weaker than the 3.86d mode. This pulsation mode decreased

in strength until the time corresponding to window 12 where it was no longer

strong enough to be easily detected above the noise. Then, during the time interval

corresponding to windows 13 through 18, the 25–26 day pulsation mode became
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Fig. 11.— This variance is that which is left in the data after the orbit fit and fit to

the dominant residual period are subtracted. The variance for each window is plotted

against the average HJD of the window. The horizontal line indicates the variance

due to the estimated observational error.

active but was weaker than the 3.86d mode. This pulsation mode increased in

strength until it became the dominant pulsation mode in the data.

The amplitude of the 3.86d variations in the first sliding window is among

the largest and the first sliding window most effectively isolates the 3.86d pulsation

mode from the time when the 25–26 day mode that is dominant. For these reasons,

the first sliding widow is studied in greater detail in the remainder of this section.

The dominant peak in the periodogram of the 1st window has a period of 3.863 days
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while the second strongest peak had a period of 0.794 days (refer to Figure 12).

The 3.863d period can be shown to an alias of the 0.997d (1 sidereal day) intrinsic

sampling rate to produce a period of 0.794 days (refer to Appendix A.4). In other

words, one of these two periods is real while the other one is an aliasing effect.

There are several pieces of evidence that, when considered as a whole, indicate very

strongly that the 0.794 day period is real and the 3.86d period is the beat.

Fig. 12.— The Lomb periodogram of the 1st sliding window.

Evidence 1)

A Lomb periodogram was calculated from the radial velocities based on the

blue observations alone, prewhitened for the orbit (refer to Figure 13). From Table

3, one can see that the blue observations are concentrated in groups taken on
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single nights, thereby sampling short–period oscillations as well as possible. In the

periodogram of the blue data, the dominant peak has a period 0.818 ± 0.012 days;

this value is identical to 0.794 ± 0.012 day within error. For the remainder of this

work, the period of the 0.794/0.818 day period will be taken as 0.80 ± 0.01 days.

In a similar manner, the Lomb periodogram was taken of the red observations

prewhitened for the orbit (refer to Figure 14). From Table 4, one can see that the

red observations were typically taken 1 per night, thus maximizing the effect of the

0.997d aliasing. The dominant peak in this periodogram has a period of 3.86 days.

Th fact that the more densely sampled data set yields the shorter period suggests

that the 0.80d period is the physical one while 3.86d is the aliasing effect.

Fig. 13.— The Lomb periodogram of the final orbit residuals of blue observations.
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Fig. 14.— The Lomb periodogram of the final orbit residuals of red observations.

Evidence 2)

When the blue observations were prewhitened for the orbit and fitted by a

Fourier– harmonic series with a period of 0.80d, the amplitude was virtually identical

to that found when the red observations were prwehitened for the orbit and fitted

by a Fourier–harmonic series with a period of 3.86d. As described in Appendix A,

aliasing can be thought of as a interaction between a physically real period and a

sampling rate in which the amplitude of the variability that is associated with the

real period is conserved. The fact that the Fourier–harmonic fit to the 0.80d period

in the blue data gives the same amplitude as the Fourier–harmonic fit to the 3.86d

period in the red data strongly suggests that the two periods are related through
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aliasing.

Evidence 3)

In the Lomb periodogram taken of the 1st sliding window, there is a peak at

0.80d in addition to the strongest peak at 3.86d. This peak disappeared from the

periodogram when the Fourier–harmonic fit to the 3.86d period was subtracted from

the data. This fact strongly shows that only one of the periods is physically real;

the first two pieces of evidence, in contrast, show only that the aliasing of the 0.8d

period contributes to the 3.86d peak.

In summary, the 3rd piece of evidence shows that the periods are definitely

related, the 1st and 2nd pieces of evidence show that they are almost certainly

related through an aliasing effect, and the 1st piece of evidence strongly suggests

that the 0.80d period is the real period while 3.86d is the aliasing effect. In addition,

the 0.80d period is nearly an integer multiple of the 0.4125d variation that has been

observed in ι Her before by Smith (1978); refer to Table 1. This fact lends physical

reality to the 0.80d period. Because the evidence that the 3.86 day period is actually

a 0.80 day period is highly suggestive but not absolutely conclusive, this pulsation

mode will be referred to as the 3.86d (0.80d) mode in the remainder of this work. It

should be noted that the amplitudes derived in Section 2.2 for the 3.86d pulsation

are unchanged even if the 0.794d is the real pulsation period; see Appendix A.4).

To examine the phase of the pulsation, should the real period be 0.80d instead of

3.86d, a Fourier–harmonic fit was made to the 1st window with the period 0.794d;

the resulting phase was found to be –0.682 radians.

In order to investigate the possible secondary pulsation mode that may exist

in the first subset of the data, the Fourier–harmonic fit to the 3.86d (0.80d) period

were subtracted from the data in the 1st window. In the Lomb periodogram of these

prewhitened data the dominant peak is 1.403 days. If the data are prewhitened for
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0.794d instead, the dominant peak in the periodogram is 9.492 days; this period can

be shown to alias with the 0.997d sampling rate to produce a period of 1.114 days,

which is another strong peak in the periodogram. The secondary pulsation mode (if

present) is likely to have a period of 1.114d or 1.403d, since 9.492 days is too long to

be a pulsation in a star like ι Her; refer to Chapter 1. The period of 1.403d ± 0.012d,

if it is the real secondary pulsation in the first subset, coincides within mutual error

bars with the that was observed in ι Her by Mathias and Waelkens (1995).

The existence of a secondary period in the first subset can also be investigated

by examining the variance associated with the 1st sliding window, which has the

highest value of ∇2 in Table 22. The variance between the S II radial velocities and

the orbit fit was found to be 3.05 (km s−1)2 in the first subset. The variance was

reduced to 0.89 (km s−1)2 and 1.37 (km s−1)2 when the data for the first subset

were prewhitened for the orbit and then the 3.86d and 0.80d periods respectively.

The 3.86d (0.80d) period accounted for 70.8% (55.1%) of the variance in the orbit

residuals whereas the observational error accounted for only 16.1% of the residual

variance. Thus 13.1% – 28.8% of the residual variance is unaccounted for, indicating

that a secondary pulsation mode was active in the 1st window. It was probably

active early in the observations (where the ∇2 in Table 22 is high) with a period of

1.114d or 1.403d (± 0.012d).

The 25–26d Pulsation Mode

The sliding window analysis of the second subset of the data (windows 19–29) shows

that a (group of) pulsation mode(s) with a period that ranges from 25 – 26 days

is dominant (refer to Table 22). Unlike the 3.86d (0.8d) period in the first subset,

the dominant period shows somewhat erratic behavior with a period ranging from

25.278 to 26.479 days. Although the periodic variation that is seen is likely due to
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the interaction of 2 or more modes, it will be referred to as the “25–26d mode” in

the remainder of this work.

Fig. 15.— The dominant periods (25–26d) in the second subset of the HRV data.

The sliding window analysis may also show evidence that the 3.86d (0.80d)

pulsation mode exists into the second subset of data where the 25 – 26d mode

dominates. This can be seen by looking at the variance in the data after the orbit

and the Fourier–harmonic fit to the dominant period have been subtracted out (refer

to Figure 11 and in Table 22, the ∇2 column). This variance starts out with a value

of 0.73 (km s−1)2 at window 19 and decreases to 0.39 (km s−1)2 by window 29. By

the last window, the variance is clearly at the level indicative of only noise due to

observational error. There may, however, be a secondary pulsation active in the first
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part of the second subset (window 19 – 24), which may be the 3.86d (0.80d) mode

as its amplitude decreases below the detection level.

Fig. 16.— The Lomb periodogram of the final orbit residuals for the second subset

of the HRV data.

A 25–26d periodicity in ι Her has already been predicted by Rogerson

(1984), who found two pulsation modes occurring simultaneously but with slightly

different radial velocity amplitudes (refer to Table 1) in observations taken with

the Copernicus spectrophotometer in May 1979. Rogerson found that the periods

of these two pulsation modes were 1.515 and 1.618 days ± 0.021 days. The beat

period corresponding to these two periods is 23.799 days. Given the errors stated by

Rogerson, the beat period may be as short as 18 days or as long as 40 days, a range

that comfortably includes the 25–26 day periods that are observed.
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The sliding window analysis suggests that the two modes observed by Rogerson

are active in our data and that they beat to produce the 25–26d pulsation that

dominates the second subset of the data. In the Lomb periodograms for the second

subset of the data, peaks with periods around 1.515d and 1.618d are present. In

Table 24, the dominant periods from the window periodograms are listed in three

ranges of date: the period in the range of 1.44d–1.55d, the strongest in the range of

1.55d–1.65d, and the strongest overall.

Table 24: Evidence for Rogerson’s Periods
Dominant Period in the Range of ....

Window 1.45–1.55d 1.55–1.65d Dominant Period
19 1.525 1.573 25.759
20 1.525 1.573 25.903
21 1.525 1.573 25.807
22 1.525 1.573 25.278
23 1.525 1.597 25.278
24 1.525 1.597 25.302
25 1.525 1.597 25.542
26 1.525 1.597 25.879
27 1.549 1.597 26.047
28 1.549 1.597 25.999
29 1.549 1.597 26.479

The 2 values found for the strongest period in the range of 1.44d–1.55d are

identical to within the 0.024d spacing and have a weighted average of 1.532 ± 0.012

days. The 2 values found for the strongest period in the range of 1.55d–1.65d are

also identical to within the 0.024d spacing and have a weighted average of 1.588 ±

0.012 days. The uncertainty in periods taken from the Lomb periodogram makes it

possible for two periodic variations to exist, beat to produce the dominant period

that is observed in the 25 – 26 day range, and be registered by the periodogram as

having the periods 1.532 and 1.588 days.

The fact that Rogerson found that his two modes had different amplitudes has

a direct and important implication. If two periods (P1 and P2) are beating with

one another with different amplitudes (A1 and A2), then the sum of their periodic
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variations cannot be replaced by a single sine function with a period equal to the

beat period. Instead, the sum of the two periodic variations consists of three terms

as follows. Let Pb be the period of the beat which equals (P−1
1 – P−1

2 )−1. Let A be

the average amplitude of the beating variations which equals (A1 + A2) / 2. The

sum of the variations (F1(t) + F2(t)) is then given by

F1(t) + F2(t) = Asin(2πtPb) + (A1 − A)sin(2πtP1) + (A2 − A)sin(2πtP2)

where each sin term has a phase that has been omitted.

In other words, because the amplitudes of the two Rogerson periods are (or

can be) different, the data should show the strongest periodicity at the beat period

as well as weaker periodicities at the two beating periods. The data show just such

a behavior. The periods 1.532 and 1.588 days are identical to the two Rogerson

periods (1.515 and 1.618 days) within mutual errors (0.012d in the current work and

0.021d in Rogerson’s periods). Thus, the data confirm the existence of the periods

reported by Rogerson (1984) as well as the predicted beat.
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1.2. The Equivalent Width Data

Lomb periodograms were calculated for the equivalent width data as above, except

that, of course, a 112d orbital variation was not removed.

The 3.86d (0.80d) Pulsation Mode

There is no significant detection of the 3.86d (0.80) pulsation mode in the windows

where that mode dominated the radial velocity variations. This implies that the

3.86d (0.80d) mode is not strongly associated with variations in Wλ above the noise

level of 6 mÅ. There is one window in the later part of the observations where a

0.997d alias of 0.80d ± 0.012d may dominate the Wλ variations (window 28).

The 25–26d Pulsation Mode

In the observations, window 26 has the Rogerson 1.588d ± 0.012d period as

dominant. The dominant period in this window is 2.628d ± 0.012d which can be

shown to be a 0.997d alias of 1.588d ± 0.012d. The fact that the radial velocity

variations associated with the Rogerson periods have a maximum amplitude at

window 24, whose average HJD is very close to that of window 26, suggests that the

Wλ variations in window 26 are associated with the Rogerson 1.588d period.

This analysis of the second subset shows that the 1.532d Rogerson period

never dominates the Wλ variations. If the amplitudes of the two Rogerson modes

scale together, then the amplitude of Wλ variations associated with the 1.532d mode

must always be much smaller than that associated with the 1.588d; if they were of

comparable amplitudes, then a 25–26d periodicity would have been detected in the

Wλ variations.
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2. A Possible Cause for Mode Switching in ι Her

Section 2 describes the two mode switching events that Smith (1978) observed in his

radial velocity data and the mode switching event that is studied in this work. This

section will offer a possible explanation for the mechanism that triggers the mode

switching: tidal interaction between the ι Her and its companion at periastron.

Table 25 shows ranges of dates when mode switching has been reported in

ι Her, the date of the closest periastron passage, and ∆, which is the absolute value

of the difference bewteen the switch and the closest periastron. The reported cases

of mode switching in the radial velocity variations of ι Her all occur very close to a

periastron passage.

Table 25: Mode Switching at Periastron

HJD (2440000.0+) of
Work Mode Switch Closest Periastron Passage ∆(days)

Smith (1978) 2933 – 2956 2970 14

Smith (1978) 3205 – 3256 3192 13

This Thesis 9576 – 9579 9599 20

The binary orbit solution (refer to Section 1) clearly indicates that the orbit

is highly eccentric (e=0.38 ± 0.04). The separation at periastron of components in

an eccentric orbit is less than the separation at apastron by a factor of (1 + e)/(1

–e). For the ι Her system, the separation at periastron is a factor of 2.23 smaller

than it is at apastron. The disruption of the primary’s surface by tidal forces in a

binary system is approximately inversely proportional to the separation distance to

the third power (Shore et al. 1994). Thus, the tidal disruption at periastron is a

factor of 11.09 greater than it is at apastron. If an interaction between the ι Her and

its companion is the cause of the mode switching, then the mode switching should
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occur near or at periastron passages because the tidal forces temporarily alter the

internal structure of the star which, in turn, affects the pulsational characteristics.

The probability that the mode switching has nothing to do with the binary

orbit and occurs by chance within X days of the periastron passage is 2X/P, where

P is the 112.36 day orbital period; this gives a false alarm probability. Considering

each mode switch as a statistically independent event, the false alarm probability of

detecting 3 mode switchings within 13, 14, and 20 days of periastron passages is the

product of the false alarm probabilities for the three mode switchings; this value is

2%. Although the observations in this work span several orbital cycles, the difference

between the average HJD of the first and last sliding window only spans 1 orbital

cycle. The sliding window analysis, therefore, covers only 1 periastron passage, and

the analysis includes no periastron passages where mode switching was not observed.

Based on this low false alarm probability, it is plausible that the mode

switching is triggered by tidal interaction at periastron passage. If tidal interactions

are the cause of mode switchings, then any given pulsation mode should persist

for a length of time comparable to the orbital period of 112.36 days. Smith (1978)

observed pulsations to dominate for 74 – 96 days before switching and the current

work suggests time scales of at least 45 – 60 days; these time scales are consistent

with the orbital period of 112.36 days. While the evidence is not conclusive, it

suggests that the hypothesis of tidal interactions at periastron triggering the mode

switching events is worthy of further investigation.



Chapter 6

Conclusions

This thesis has identified the radial velocity periodicities in ι Her that are caused by

pulsations, as indicated by variations in the S II (6) λ5453.810 line. Measurements

of that line’s equivalent width and line asymmetry were studied as well in order to

describe the nature of velocity variations (i.e. were they accompanied by equivalent

width variations?). Particular attention has been paid to the temporal changes that

the observed pulsation modes experienced during the course of the observations.

The purpose of this section is to summarize the results.

This work has identified a previously unreported radial velocity variation with

a period of 0.80d ± 0.01d. This work has also confirmed the two periodicities cited

by Rogerson (1984): 1.515d and 1.618d ± 0.021d. These periodicities and their beat

were observed in the radial velocity variations of the S II λ5454 line to have the

periods of 1.532, 1.588, and 26.565 ± 0.012 respectively. The two periods and their

beat were observed in radial velocity data, while the 1.588d periodicity was also

observed in a subset of the equivalent width data.

The most significant result of this work was the detection of long–term trends
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in the amplitudes of radial velocity variations, including the occurrence of mode

switching where the role of dominant velocity variation changed from one mode to

another. In the first 30 of the 58 observations, the dominant radial velocity variation

had a period of 0.80d. The amplitude of this velocity variation was observed to

decrease steadily over a interval of 60 days until the role of dominant velocity

variation was observed to switch to the beat between the Rogerson periods. In

the last 28 of the 58 observations, the amplitude of 25–26d beat was observed to

increase steadily over a interval of at least 45 days. The mode switching event that

is described in this work occurred near the time of periastron passage; this result

suggests that tidal interactions at periastron perturb the internal structure of ι Her

causing the mode switching to occur.

If the above picture is correct, then it may explain why different observers see

different modes active at different times or the same mode active but with different

amplitudes. While mode switching has been detected before in ι Her (Smith 1978),

this work presents the first description of the decay and growth of the modes over

long time scales as well as a possible explanation for the cause of the mode switching.

Mode switching is inherently a non–linear phenomenon (Unno et al. 1989) because

power is being transferred between two different unstable pulsation modes. The full

non–linear theory of non–radial pulsations is just now beginning to be studied and

applied to pulsating B stars (Goupil & Buchler 1994; Van Hoolst 1994; Moskalik

& Buchler 1994). The observed instance of mode switching that is described in

this work may serve as an observational constraint for the newest generation of

non–linear, non–radial pulsation models.

Table 26 summarizes the observed properties of the two pulsation modes that

were observed to dominate the radial velocity variations: the 3.86d (0.80d) mode

and the 25–26d mode. For the radial velocity variations, the table displays the
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smallest, average (in parentheses), and largest amplitudes that were observed in the

window analysis. The table also points out any long term trends that exist in the

measurements.

Table 26: Properties of Pulsation Modes
RV Variations Wλ Variations

Period Amplitude(km s−1) Amplitude(mÅ)

0.80d 2.0 (2.4) 2.9 9
Trend Decreasing Indeterminate

25–26d 1.9 (2.3) 2.6 Not Observed
Trend Increasing Indeterminate

1.532d < (2.3) << 20
Trend Increasing Indeterminate

1.588d < (2.3) 20
Trend Increasing Indeterminate

From Table 26, the properties of the two pulsation modes can be compared.

The first mode (period of 0.80d) was accompanied by relatively small equivalent

width variations. The 1.588d period (part of the 25–26d ‘mode’) is accompanied by

large equivalent width variations, but only near the time interval when the 25–26d

period had its maximum radial velocity amplitude. Changes in the equivalent

widths of optical Si II and Si III lines in ι Her have been studied by Smith (1978).

Smith found that such variations were not consistent with temperature variations

in the star’s atmosphere. Instead, he showed that the variations could be caused

by variations in the microturbulent velocity field within the star. It is very likely

that the equivalent width variations in the strong S II line are due to the same

mechanism.

As a byproduct of this work, a revised orbit was obtained for ι Her. This
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orbit is based on radial velocity data of a higher quality and at least as great a

quantity than those used in previous orbit determinations. Additionally, the orbit

was calculated in a way that takes into account the strongest radial velocity variation

due to pulsations in the overall data set.

Finally, the velocity data show that different pulsation modes can be dominant

at different times; the first half of the observations were dominated by a 0.80d

velocity variation whereas the second half of the observations were dominated by a

26.565d period (a beat between the two Rogerson (1984) periods). The first part

of the velocity data also showed evidence of a secondary pulsation period (besides

the 0.80d period), accounting for 13.1% – 28.8% of variance in the orbit residuals.

This secondary pulsation had a velocity variation with a period of 1.114d or 1.403d

± 0.012d. The periods associated with all of the observed periods that are dominant

in the radial velocity data (0.80d, 1.532d, and 1.588d ± 0.012d) are in the range

appropriate for 53 Per (or SPB) non–radial pulsations. Thus, by the strictest

definition, the results do not place ι Her into the class of β Cep stars.



A. The Lomb (Scargle) Periodogram

Throughout this work, data are being searched for periodic variations. The data

are, however, sampled unevenly with respect to time: this fact makes conventional

Fourier–transform power spectra somewhat invalid. A technique that is designed for

unevenly spaced data is the Lomb (Scargle) periodogram (Lomb 1976, Scargle 1982)

because it weights the time of each observation and not the time interval between

observations.

In this appendix, the basic concepts of the Lomb periodogram will be described

with emphasis comparing it to the Fourier–transform based power spectrum. The

following description is based on the work of Scargle (1982).

A.1. Definition of the Lomb periodogram

Given the following:

N = Number of data points

t(i) = Time of observations

X(i) = X( t(i) ) Value of the observations

Xm = Mean value of X(i)

V = Sample variance

The sample variance (V) is:

V =
1

N − 1
×

N∑
i=1

(X(i) − Xm)2

Let τ = τ(ω) = a constant as a function of angular frequency (ω).

Tan(2ωτ(ω)) =

∑N
i=1 sin(2ωt(i))∑N
i=1 cos(2ωt(i))

81



82

Let P = P(ω) = Lomb power as a function of angular frequency (ω).

P =
1

2V

[∑N
i=1(X(i) − Xm)cos(ωt(i) − ωτ(ω))

]2

∑N
i=1 [cos2(ωt(i) − ωτ(ω))]

+
1

2V

[∑N
i=1(X(i) − Xm)sin(ωt(i) − ωτ(ω))

]2

∑N
i=1 [sin2(ωt(i) − ωτ(ω))]

The above mathematical framework was implemented (by the author) in an

IDL routine.

A.2. A more intuitive definition for the Lomb periodogram

The expression for the Lomb power P(ω) can be derived from a standard linear

least–squares treatment; this will give a more intuitive understanding of what the

Lomb power physically represents.

Assume that the following model describes the data.

Xf (i) = A cos[ωt(i) − ωτ(ω))] + B sin[ωt(i) − ωτ(ω))]

The best fit of such a function (at every frequency) can be obtained by minimizing

the sum of the square of the differences (errors) between the observed data and the

fitting function with respect to A and B; ie. to minimize the following:

S.S.E.(w) =
N∑

i=1

(Xf (i) − X(i))2

One can select τ(ω) so as to eliminate a cross term that arises in the product

(Xf (i)–X(i))2; this choice of τ(ω) is identical to that previously defined.

Finally, one may define the “reduction in the sum of squares” at a given frequency

as: R.S.S.E.(ω) =
∑N

i=1 X(i)2 – MIN [S.S.E.(ω)] with respect to A and B. One can
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easily show that the Lomb power is exactly equal to the reduction in the sum of

squares (R.S.S.E.) normalized (i.e. divided) by the variance (V).

The Lomb periodogram can, thus, be thought of as a procedure that fits (at

each frequency) a general trigonometric function (i.e. Xf ) to the data. The Lomb

power at a frequency measures how well the general trigonometric function (at its

least–squares best) can be made to fit the data.

A.3. Statistical properties of the Lomb periodogram

This section will describe how the power level in the Lomb periodogram is affected

by purely random, mean–zero, Gaussian distributed noise.

The probability for finding P (at any given frequency) due to noise in the range P=Z

to P=Z+dZ is given by:

Prob(Z)dZ = e−ZdZ.

The probability that the power P (caused by noise) is greater than and less than a

specific power level Zo are given by:

Prob(Z > Zo) = e−Zo and Prob(Z < Zo) = 1 − e−Zo .

These results indicate that the likelihood of a peak in the periodogram with

power P(ω)=Zo being due to noise decreases exponentially with the Lomb Power

level (Zo); thus a peak that extends just slightly above the continuum of the Lomb

power spectrum may, in reality, be a very significant signal in the data. The

significance level of a peak in the Lomb periodogram can be a very complicated

function of frequency due to the unevenly spaced nature of the data and there are

methods for estimating the significance based on the Lomb power of a given peak.

In this work, the significance of peaks in periodograms are estimated in a much



84

more straightforward and intuitive manner. The variance in a data set is calculated,

a Fourier–harmonic fit is made using the period that corresponds to the peak of

interest as the fundamental, the fit is subtracted from the data, and the variance

in the new data set is calculated. The difference of the two variances is a measure

of the “significance” of the peak. This method measures the significance of the

period and its harmonics, while the Lomb power measures only the significance of

the fundamental period.

A.4. Advantages and disadvantages over a power spectrum

The main advantage of the Lomb periodogram is the fact that it is designed to work

with unevenly spaced data. The fact that the data are unevenly sampled gives rise

to an important benefit over the power spectrum: the data can yield periodicities

with frequencies well above the Nyquist frequency because the time scale that limits

detection is not the average time between observations, but the minimum time

between observations.

A secondary advantage is the fact that if the data are unevenly spaced enough

to call for a Lomb periodogram, then they are likely to be uneven enough to

eliminate most aliasing problems. Astronomical observations are, however, very

strongly aliased by the intrinsic sampling rate of 0.997 days (1 sidereal day) which

may not be removed even in highly uneven data. Any aliasing that occurs with the

intrinsic sampling rate will conserve the amplitude of the real oscillation (a beat

between two real oscillations will add the amplitudes of the beating oscillations). If

two frequencies are present in the data (f1andf2) and are related through aliasing

with the 0.997d sampling rate, it may not be possible to determined which is real

and which is the alias; but, the amplitude derived from a Fourier–harmonic fit to the

2 frequencies will be identical. Thus, even though there may be some ambiguity in
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the frequency of an oscillation, its amplitude can be always be determined.

The main disadvantage in the Lomb periodogram is the fact that different

frequencies are no longer orthogonal to one another as they are in a power spectrum

because a discrete summation over a sine (or cosine) function with unevenly spaced

data does not yield the orthogonality that exists in a discreet summation with evenly

spaced data.

The fact that frequencies are not orthogonal means that they can be

inter–related in a complicated manner. The most practical way to deal with this

problem is called ‘prewhitening’. Consider a Lomb periodogram that displays peaks

at 2 different frequencies, with frequency f1 being the strongest. In order to be sure

that the other frequency (f2) is independent of f1; one must fit a periodic function

with a frequency of f1 to the data and then subtract this fit from the data. This

subtraction process in the time domain is called prewhitening. Only if the frequency

(f2) is still present in the Lomb periodogram of the data after the data has been

prewhitened for the f1 frequency, can it be considered as real and independent of

frequency f1.



B. Uncertainties in Wλ and Line Asymmetry Measurements

In this thesis, measurements of the equivalent width and line asymmetry of the S

II λ5454 line are studied in an attempt to describe the physical nature of pulsation

modes that are seen in the radial velocity measurements. While these measurements

are only used as supporting data, it is (none the less) important to know the

uncertainty in these measurements so that the results based on them can be fully

interpreted. This appendix will derive a formula for the uncertainty in Wλ and line

asymmetry measurements that stem from the uncertainty of continuum placement.

Basic definitions

Wλ = the equivalent width rendered from a continuum normalized spectrum.

Fc= the flux at the local continuum of the absorption line being measured. Because

the Wλ’s used in this thesis are measured from continuum normalized spectra, the

value of Fc will be approximately 1.0 in all cases.

Wo = the wavelength which bisects the line profile at Fc.

W = the total width of an absorption line at the local continuum (Fc).

W(lhs) = the width of an absorption line (measured at Fc) from the line minimum

to the short wavelength (i.e. left hand side) terminus of the line.

W(rhs) = the width of an absorption line (measured at Fc) from the line minimum

to the long wavelength (i.e. right hand side) terminus of the line.

E+ = the amount (in units of normalized flux) that the local continuum can be

raised before becoming obviously too high (by eye).

E– = the amount (in units of normalized flux) that the local continuum can be
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lowered before becoming obviously too low (by eye).

E = the average uncertainty in the continuum placement = 0.5 × (E+ + E–).

f(wl) = a function that describes the absorption line profile as a function of

wavelength (wl).

The mathematical definition of an equivalent width is:

Wλ =
1

Fc

Wo+W (rhs)∫
Wo−W (lhs)

[Fc − f(wl)] d(wl)

which is equal to

Wλ = W −
Wo+W (rhs)∫

Wo−W (lhs)

[f(wl)/Fc] d(wl)

The derivation

With the above definitions, it is now possible to derive the error in the Wλ and

line asymmetry measurements that are caused by an uncertainty in the placement

of the local continuum. The derived uncertainty will be the same for the Wλ

measurements as the line asymmetry measurements; the derivation will be done

for the Wλ measurements and then shown to be applicable to the line asymmetry

measurements.

Step 1) Differentiate Wλ with respect to Fc.

The differentiation results in three terms.

d(Wλ)

d(Fc)
=

[
d(W (rhs))

d(Fc)
− d(W (lhs))

d(Fc)

]
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+
1

Fc

[W − Wλ]

− 1

Fc

[
f(Wo + W (rhs))

d(W (rhs))

d(Fc)
− f(Wo − W (lhs))

d(W (lhs))

d(Fc)

]

Step 2) Eliminate terms.

While the formal differentiation contains three terms, in practice, only

the second term contributes to the uncertainty in Wλ caused by the placement

uncertainty in the continuum. This fact can be justified in two ways.

(1) The right and left terminus of the line profile are generally fairly far from the

Wo, making the values of f(Wo+W(rhs)) and f(Wo–W(lhs)) nearly equal to Fc. When

this happens, the third term exactly cancels with the first, and both are eliminated

from the expression.

(2) The absorption lines in ι Her (including the S II line) are fairly symmetric with

line asymmetries that are, in general, far below the 7 mÅ observational error. Even

when lines are somewhat asymmetric, the effect is usually greatest near the line

core and not the local continuum; thus, W(rhs) – Wo equals Wo – W(lhs) even in

slightly asymmetric lines. When one deals with a symmetric or nearly symmetric

line where W(rhs) – Wo equals Wo – W(lhs), then d(W(lhs))/d(Fc) becomes equal

to d(W(rhs))/d(Fc) and f(Wo+W(rhs)) becomes equal to f(Wo–W(lhs)). Thus the

first and third terms both tend to be zero.

The above 2 points show that the first and third term tend to be nearly

zero, and tend to cancel each other. Because of this, only the second term in the

differentiation will be kept giving the following result: d(Wλ) = (1/Fc)(W−Wλ)d(Fc).

Step 3) The average value of d(Wλ) as the uncertainty.
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In general, the uncertainty in the continuum placement depends on whether

the continuum is being lowered or raised (i.e. E+ does not equal E–). In general, E+

is dominated by the uncertainty caused by noise at the continuum E+ ≤ Fc/SNR.

The value of E–, on the other hand, is generally more tightly fixed because the

lowering of the continuum is easily judged with respect to the depression in flux

caused by an absorption line. In order to account for the possibility that E+ is

different from E–, one should compute the uncertainty separately for each case.

d(Wλ)+ = (E+/Fc) [ W – Wλ ] and d(Wλ)– = (E–/Fc) [ W – Wλ ]

The final estimate of the uncertainty is the average of d(Wλ)+ and d(Wλ)–, which

gives the following.

d(Wλ) = (E/Fc) [ W – Wλ ] where E = 0.5 (E+ + E–).

This derivation, made independently by the author, is (ignoring photon noise)

identical to a result that was derived by Chalabaev and Maillard (1983).

Discussion of the derivation

An important thing to notice about the above derivation is that d(Wλ) depends on

the quality (SNR) of the observations. This fact can be seen by considering the

smallest value that the uncertainties can take at any point on the continuum; these

values correspond to the smallest values that E+ and E– can have. The minimum

values of E+ and E– are clearly and directly related the SNRc of the observations

in the following way:

E+ and E– ≥ Fc/SNRc.
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Because the S II line studied in this thesis is located in a fairly vacant portion

of ι Her’s spectrum, the uncertainty in the local continuum placement is largely

due to noise at the local continuum. This fact, along with the different intrinsic

SNR’s that exist in the observations at the blue and red regions, require that the

uncertainties be studied separately for each of the two regions.
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