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Possible microscopic explanation of the virtually universal occurrence of static friction

J. B. Sokoloff
Physics Department and Center for Interdisciplinary Research on complex Systems, Northeastern University,

Boston, Massachusetts 02115
~Received 18 July 2001; revised manuscript received 6 December 2001; published 7 March 2002!

Perturbation theory, simulations, and scaling arguments predict that there should be no static friction for two
weakly interacting, flat, atomically smooth, clean solid surfaces. The absence of static friction results from the
fact that the atomic-level interfacial potential energy is much weaker than the elastic potential energy, which
prevents the atoms from sinking to their interfacial potential minima. Consequently, we have essentially two
rigid solids, for which the forces at randomly distributed ‘‘pinning sites’’ cancel. It is shown here that even
fluctuations in the concentration of atomic-level defects at the interface do not account for static friction. The
sliding of contacting asperities, which occurs when the problem is studied at the multi-micrometer length scale,
relative to each other, however, involves the shearing of planes of atoms at the interface between a pair of
asperities from the two surfaces in contact. Since this results in a force for the interaction of two in contact
asperities which varies over sliding distances of the order of an atomic spacing, the contacting asperities at the
surface are able to sink to their interfacial potential minima, with negligible cost in elastic potential energy.
This results in static friction.

DOI: 10.1103/PhysRevB.65.115415 PACS number~s!: 81.40.Pq, 46.55.1d, 62.20.Qp
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I. INTRODUCTION

It is well known to every student in an elementary phys
class that kinetic friction has very little velocity dependen
in the slow sliding speed limit~often called ‘‘dry friction’’!.
Yet many atomic-level treatments of friction fail to give th
behavior. For example, molecular dynamics simulations
analytic calculations1–5 show that while commensurate inte
faces are pinned for applied forces below a critical va
~i.e., exhibit static friction!, incommensurate surfaces are n
pinned and exhibit viscous friction~i.e., friction proportional
to the sliding velocity! for sufficiently weak interfacial
forces. Perturbation theory calculations done for a nonme
lic monolayer film with underdamped phonons sliding on
nonmetallic substrate with some disorder, however, g
nearly velocity independent sliding friction4 and exhibit a
divergence in the mean square atomic displacement in
limit of zero sliding velocity. The latter behavior signifie
that the film will be pinned below a critical applied forc
This behavior has been confirmed by recent molecular
namics calculations on such a system.5 Perturbation theory
calculations done for a three-dimensional film sliding on
substrate, however, give viscous friction. This result is c
sistent with the notion that without multistability, there ca
not be ‘‘dry friction’’ due to vibrational excitations in an
elastic solid.6,7 Dry friction is possible for the monolaye
film, as mentioned above, however, because the t
dimensional phonon density of states of the film does
drop to zero as the frequency goes to zero, as it does f
three-dimensional solid.4 As the sliding velocity drops to
zero, the ‘‘washboard frequency’’~the sliding velocity di-
vided by a lattice constant! drops to zero. Since the phono
density of states does not drop to zero, there are phon
present at arbitrarily low frequency, which can be excited
the substrate potential. Since the density of states does fa
zero as the frequency falls to zero in three dimensions, h
ever, the force of friction falls to zero as the velocity does.
0163-1829/2002/65~11!/115415~9!/$20.00 65 1154
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models used for charge density waves~CDW’s!, in which the
CDW is modeled as an elastic medium moving through
solid containing impurities distributed randomly througho
it, there is no pinning in four or more dimensions.8 In con-
trast, in fewer than four dimensions, there is pinning. Fo
model used for friction,9 consisting of a three dimensiona
elastic medium moving over a surface containing a rand
array of point defects, the critical dimension is 3.9 As a con-
sequence, although if the defect potential is sufficiently lar
there will be static friction and ‘‘dry friction,’’ for weak de-
fect potentials, there will be no static friction and the kine
friction will be viscous~i.e., linear in the sliding velocity!.
The nonperiodic ‘‘defect potential’’ acting across the inte
face could be due to disorder on any length scale in
problem. For example, it can be due to atomic level po
defects, such as vacancies and substitutional impurities a
interface, as has been assumed in Refs. 4 and 5, but it
also be due to the fact that the surfaces of the sliding so
are only in contact at micron scale randomly located prot
sions, commonly known as asperities. On the atomic scal
can also be due to adsorbed film molecules.2

In contrast to atomic level point defects, however, asp
ties and adsorbed molecules possess internal structure a
a consequence if they are sufficiently flexible, they can
hibit multistability ~i.e., the existence of more than one stab
configuration needed for the Tomlinson model6 to apply!.
Caroli and Noziere7 proposed an explanation for ‘‘dry fric
tion’’ based on the Tomlinson model.6 In the Tomlinson
model the two bodies which are sliding relative to each ot
at relatively slow speeds remain stuck together locally u
their centers of mass have slid a small distance relative
each other, at which point the stuck configuration of the t
surfaces becomes unstable and the two surfaces locally
rapidly with respect to each other until they become stu
again, and the process repeats itself. The slipping motion
takes place can either be local or can involve motion of
body as a whole. Then the actual friction acting locally at t
©2002 The American Physical Society15-1
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J. B. SOKOLOFF PHYSICAL REVIEW B 65 115415
interface could be viscous, but the rapid motion that ta
place, even at slow sliding speeds, could still result in
sizable amount of friction, even in the limit of vanishin
average sliding velocity. In the Caroli-Noziere model7 inter-
face contact only occurred at a very dilute concentration
interlocking asperities. It is the rapid stick-slip motion
these asperities, which gives rise to dry friction on the av
age in this model, if we assume that all of the kinetic ene
released in the slip is dissipated, which is probably true
the zero velocity limit. This mechanism would seem to imp
that the occurrence of dry friction depends on the existe
of multistability; in situations in which the asperities are n
multistable, there will be neither ‘‘dry friction’’ nor static
friction. It is argued7 that in the absence of plasticity in th
model, the maximum force of dynamic friction, in the velo
ity approaches zero limit, must be equal to the force of st
friction. It was pointed out in recent work by these worke
however, that the asperities are generally too stiff to unde
the Tomlinson model-like instabilities because of th
shape.7 Therefore, they proposed alternative mechanisms
one mechanism, it is assumed that there exists a glassy
at the interface in the experimental systems that they
trying to describe. Glassy materials possess metast
atomic configurations~the equivalent of ‘‘two-level systems’
which are believed to contribute to the specific heat! which
can exhibit Tomlinson model-like instabilities during slidin
similar to those found by Falk and Langer in their study
the shearing of glassy materials.10 This mechanism will,
however, only be the correct explanation of ‘‘dry friction
for glassy interfaces. It is not clear, however, that all int
faces are glassy. Heet al.2 proposed that the occurrence
static friction between elastic solids requires the existenc
adsorbed mobile molecules at the interface. It is importan
know if the occurrence of a glassy interface or adsorb
mobile molecules is a requirement for the occurrence
static friction. If it is, it would imply that clean interface
between crystalline solids would not exhibit static frictio
Caroli and Noziere7 also proposed that adhesive forces co
provide the required multistability~because of the so calle
‘‘jump to contact’’ instability! to give friction at slow speed
It is not clear that this will be significant for asperities ev
under light loads, however. In the absence of multistabil
there is good reason to believe that there will be neither st
friction nor dry friction, at least for light enough loads to p
us in the ‘‘weak pinning limit’’ in the language of the charg
density wave and vortex problems first studied by Larkin a
Ovchinikov11 and Fukuyama, Lee, and Rice.12 The existence
of multistability has also been shown to be a condition
pinning of CDW’s.13 ~One way of understanding this is th
if there is static friction, the sliding velocity of the solid wi
only be nonzero if a force above the force of static friction
applied to the body. Alternatively, if we plot the force as
function of velocity, we can view this as implying that th
force of friction approaches a nonzero value as the cente
mass velocity approaches zero. The arguments in this re
ence and Ref. 7 tell us that there must be multistability
this to occur.!

It must be stressed that the present work, as all prev
work on atomic level theories of friction quoted above, de
11541
s
a

f

r-
y
n

e
t

ic
,
o

r
In
lm
re
le

f

-

of
to
d
f

,
ic

d

r

of
r-

r

us
s

with the very light load limit, in which the hard cores of th
atoms of the two surfaces which are in contact are not be
pressed together with a lot of force. These treatments, h
ever, can be thought of as one step closer to describing
tion in every day applications, in that the loads are high
than the extreme limit of contactless friction.14 It is felt that
it is important to study such a limiting case, as a first s
towards understanding the higher load cases that occu
engineering applications. No claim is being made here t
the present discussion will apply to much higher loa
which could be dominated by gross plastic deformations
wear. It is hoped, however, that the present discussion
stimulate more precise experiments in the light load limit,
order to understand the fundamental mechanisms for frict

In Sec. II, a discussion is given of the scaling theore
treatment of static friction. This is an outgrowth of a simil
treatment by Fisher of the pinning of charge density wav
It is found that, at least for surfaces with defects that prod
a relatively weak potential, the Larkin domains~i.e., the re-
gions over which the solid distorts to accommodate defe
at the interface! are as large as the interface, as was found
Persson and Tosatti using perturbation9 theory. As a conse-
quence, the forces from the various interfacial defects ten
cancel each other, resulting zero for the average static
tion. Since all that remains are fluctuations, which are p
portional to the square root of the number of defects at
interface, this implies that the static friction per unit interfa
area decreases as the inverse of the square root of the
face area, as was found for perfect crystalline interfaces
Museret al.2

In Sec. III, it is shown that when one takes into accou
the distribution of contacting asperities at the interface t
occurs when the problem is studied at the multimicrome
scale, one finds that the asperities are in the ‘‘strong pinn
limit,’’ implying that there is static friction. This is shown to
be a consequence of the fact that the shear force between
contacting asperities varies by a large fraction of its mag
tude as the asperities are slipped relative to each other
slip distances of the order of atomic spacings. This must
true for a wide range of interfaces, both crystalline and d
ordered.~The only assumption that needs to be made is t
the interface is made of planes of atoms in contact.! As a
consequence, essentially all asperities can sink to their c
tact potential minimum by moving a distance parallel to t
interface of the order of a lattice spacing~which is much
smaller than typical interasperity spacing! with negligible
cost in elastic energy. Thus, when an external stress is
plied, the friction forces from all of the asperities will ac
coherently, resulting in a net force of static friction. Furthe
more, the force constant for the contact potential is mu
larger than that due to the elastic force constant of the asp
ties. As a consequence, the asperities satisfy the criterion
the occurrence of multistability, shown in Ref. 7 to be
requirement for the occurrence of static friction. This tre
ment is in contrast to the treatment in Ref. 9, which argu
that in the weak coupling limit the Larkin length for th
asperities will be much larger than the width and length
the interface. It does not, however, tell us anything ab
whether the criterion for static friction that I use is satisfie
5-2
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POSSIBLE MICROSCOPIC EXPLANATION OF THE . . . PHYSICAL REVIEW B 65 115415
namely that the all of the asperities can sink to a con
potential minimum with negligible cost in elastic energy
the sliding solid. To put it another way, my argument for t
lack of static friction due to atomic level defects in the we
pinning limit, given in Sec. II, is based on the scaling arg
ments that I apply in that section to Eq.~3!, which show that
for a three-dimensional solid sliding over another solid~or
substrate! there exist only two regimes. There is a weak p
ning regime, in which the elastic forces of the solid domin
over the interfacial forces~and the Larkin length is effec
tively infinite! and a strong pinning regime in which th
interfacial forces dominate~in which the larkin length is ef-
fectively very small!. In the former regime, there is no stat
friction for a macroscopic solid and in the latter regime,
gime there is static friction. I find that for weak defect p
tentials, atomically flat surfaces can be in the weak pinn
regime, and exhibit no static friction, but, in contrast, I fin
that when the problem is studied on the multiasperity len
scale for surfaces that are only in contact at micron sc
asperities, the interfacial forces dominate over the ela
forces, implying that we are in the strong pinning regim
and there is static friction.

Volmer and Natterman15 have developed a theory to a
tempt to explain Amonton’s law on a microscopic leve
Their treatment of Amonton’s law is qualitatively similar t
that of Greenwood and Williamson.16 Both treatments deter
mine the area of contact as a function of load, and th
determine the force of static friction by multiplying it by a
estimate of the shear strength for the contacting asperitie
the estimate of the static friction in Ref. 15, no account
taken of the possibility that forces acting on the various c
tacting asperities can act in arbitrary directions and could
principle, in the weak load limit cancel out. Their treatme
for sliding surfaces is only able to give ‘‘dry friction’’ if the
surface height correlators have a cusp in their position
pendence. Analogies to charge density wave dynamics
used to argue that such behavior is expected to occur but
disappear on much smaller length scales~presumably com-
parable to atomic dimensions!. This return to analytic behav
ior of the correlator on smaller length scales again lead
dynamic friction which approaches zero as the velocity
proaches zero~i.e., essentially viscous friction!.

II. SCALING TREATMENT AT THE ATOMIC LEVEL
OF STATIC FRICTION

In this section, we will treat the problem of static frictio
due to disorder which results from atomic level defects, s
as vacancies or substitutional impurities using scaling ar
ments. In the next section, we will consider random conta
ing asperities, which occur when the surface is viewed on
micron length scale.

Following Fisher’s treatment of the charge density wa
~CDW! problem,8 it is clear that we can also use a scali
argument for the friction problem in order to determi
whether the pinning potential becomes irrelevant as
length scale becomes large. In order to accomplish this, le
formulate this problem in a way similar to the way th
Fisher does, by considering the crystal lattice to be slid
11541
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over a disordered substrate potential under the influence
force F, which is applied to each atom in the crystal. Th
we can write the equation of motion as

mü1mgu̇j5(
j 8

D~Rj2Rj 8!uj 81f~Rj !1F, ~1!

whereD(Rj2Rj 8) is the force constant matrix for the lattice
f(Rj ) is the force due to the substrate on thej th atom, andRj
is the location of thej th atom in the lattice. As a result o
slow speed sliding of the lattice over the disordered subst
potential, low frequency acoustic phonons are excited. Si
these modes have wave vectork, small compared to the Bril-
louin zone radiusuj , the displacement of thej th atom is a
slowly varying function ofRj . Then, following the discus-
sion in Ref. 17, we can write the first term on the right ha
side of Eq.~1! as

D8~ i 21¹j !uj , ~2!

where D8(k) is the Fourier transform ofD(Rj2Rj 8) and
¹j5(]/]Xj ,]/]Yj ,]/]Zj ), whereRj5(Xj ,Yj ,Zj ) to a good
approximation. Furthermore, to a good approximation
can expandD8 to second order in¹j . Equation ~1! then
becomes

mü1mgu̇j52vE8¹ j
2uj 81f~Rj !1F, ~3!

whereE8 is an effective Young’s modulus andv is the unit
cell volume. We can then apply Fisher’s scaling argument8 to
the resulting equation. This is accomplished by dividing t
solid into blocks of of lengthL lattice sites parallel to the
interface andL8 lattice sites normal to the interface, assum
ing that these dimensions are chosen so thatuj varies slowly
over each such a block. Then integrating Eq.~3! over a block
which lies at the interface, we obtain

L2L8@müj 81mgu̇j 8#52~1/2!L8L2~E8/L2!¹ j8
2uj 8

2Lf8~Rj8!1L2L8F, ~4!

where¹8 j
2 denotes the Laplacian in the rescaled coordina

@(Xj 8
8 ,Yj 8

8 ,Zj 8
8 )5(Xj /L,Yj /L,Zj /L8)#, which are the coor-

dinates of the centers of the boxes. Here we made use o
fact thatuj varies on length scalesL andL8, when we trans-
form to the block coordinates. Hence, we may replace¹ j

2 by
L22¹8 j

2 and f(Rj ) by Lf8(Rj 8) The substrate force is only
multiplied by L because the interaction of the defects with
single block at the surface is proportional to the square r
of the surface area of the block. For a thick solid~i.e., one
whose lateral and transverse dimensions are comparabl!, L
andL8 are always of comparable magnitude. Then, we c
clude that no matter how large we makeL andL8, the ratio
of the elastic force~the first term on the right hand side! and
the substrate force~the second term on the right hand sid!
will remain the same. This implies that we are at the critic
dimension for this problem since when the length scaleL
andL8 are increased, neither the elasticity nor the subst
force becomes irrelevant. Whichever one dominates at
length scale will dominate at all scales. Equation~4! implies
that the force of static friction per unit area acting at t
5-3
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J. B. SOKOLOFF PHYSICAL REVIEW B 65 115415
interface is inversely proportional to the square root of
interface area. Instead of using the equations of motion, a
done here, we could alternatively formulate these scaling
guments by minimizing the energy of the system.18

Next, let us consider the effect of fluctuations in the def
concentration, for a thick solid. To do this, we again divi
the solid into boxes of lengthL and examine what percentag
of the blocks at the interface contain a large enough conc
tration of defects to put these blocks in the ‘‘strong pinnin
regime~i.e., the regime in which the substrate forces dom
nate over the elastic forces between the blocks!. To examine
whether this is possible, let us define a parameterl
5V1 /E8b3, where b is a lattice spacing andV1 is the
strength of the potential due to a defect acting on an at
Let nc5c8L2 be the number of defects within a particul
strongly pinned block andc8 is the defect concentratio
large enough for it to be considered a strongly pinned blo
i.e., a block whose interaction with the substrate is mu
larger than the elastic interaction between such blocks.~This
concentration is necessarily noticeably larger than the m
defect concentration on the interface.! Then the interaction of
a typical strong block with the substrate defects
l(c8L2)1/2. The interface area surrounding each strong blo
is the total interface areaA divided by the number of strong
blocks at the interface, which is equal toPA/(bL)2, whereP
is the probability of a particular block being a strong o
@A/(bL)2 is clearly equal to the total number of blocks at t
interface, both strong and weak#. Then we obtain (bL)2/P
for the area surrounding a strongly pinned block. Then
typical length for the elastic energy acting between t
strong blocks isL8b, where L85L/P1/2. The ratio of the
total elastic energy associated with each strong block toE8b3

is the product of the volume surrounding a strongly pinn
block5(L8)3 with (L8)22, since¹2u}L822 or L8. Then the
criterion for a block to be a strong block isl(c8L2)1/2@L8
or l@(c8P)21/2. Sincec8P,1, this violates our previous
assumption thatl!1. Thus, we conclude that such fluctu
tions in the defect concentration will not lead to static fr
tion.

If we assume that the sliding solid and the substrate
faces at the interface are incommensurate and that the de
are either vacancies or substitutional impurities, which
centered around particular lattice sites in the substrate, t
is another type of concentration fluctuation. For a unifo
random distribution of defects over the substrate lattice si
surface atoms of a completely rigid sliding solid will b
found at all possible position within the various defect p
tential wells, which results in the net force on the solid due
defects being zero on the average. Let us again divide
solid into blocks of lengthL, but now the concentration o
defects in each block will be taken to be equal to the m
defect concentrationc. We will look for blocks in which the
defects are distributed such that there is a sizable conce
tion of atoms located in that region of defect potentials,
which the force on the block is opposite the direction
which we are attempting to slide the block, due to the
fects. Then we can divide each block into regions of eq
size. If a defect lies in one region, the atoms which inter
with the defect will have a force exerted on them oppos
11541
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the attempt to slide the solid, and if it lies in the other regio
the force on the atoms that it interacts with will be in th
opposite direction. These two regions are, of course, fr
mented. Then the net force on a block of lengthL at the
interface due to the substrate is proportional toL2dcP,
where dc is the mean difference in defect concentratio
between the two regions in the block defined above~such
that the mean defect concentration over the whole block isc)
andP is the probability of having a concentration differen
dc between these two regions. The un-normalized proba
ity of having a concentration differencedc between the two
regions in a block is given by

N1!

nc1! S 1

2
N12nc1D ! ~cN12nc1!! S 1

2
N12cN11nc1D !

,

~5!

where the number of atoms in a blockN15L2 and the num-
ber of atoms in the region in which the net force is agai
the direction in which we are attempting to slide the so
nc15(1/2)@c1(1/2)dc#N1, whose normalized smalldc ap-
proximation is

P'expS 2
3N1

2c~12c!
dc2D . ~6!

Since in the largeN1 limit P decreases exponentially wit
increasingN1, unlessdc'N1

21/2, we conclude that the sub
strate defect force on the block will not increase with i
creasingN1 and hence in the largeN1 limit, the elastic force
on the block, which we showed above is proportional toL
5N1

1/2, will dominate. This implies that this type of concen
tration fluctuation will not lead to static friction for a macro
scopic size block.

In the discussion under Eq.~4!, it was argued that for an
interface between two three-dimensional solids, which
sliding relative to each other, if the interfacial force dom
nates over the elastic forces at one length scale, it domin
at all length scales, implying that there is static friction f
macroscopic solids. On the other hand, if the elastic for
dominate at one scale, they will dominate at all length sca
implying that there is no static friction for macroscopic so
ids. Let us now examine whether or not the interfacial dom
nates for an interface between two flat crystalline solids w
defects in contact. The energy of the interface consists of
parts. One part is the single defect energy, which consist
the interaction energy of a defect with the substrate plus
elastic energy cost necessary for each defect to seek its m
mum energy, neglecting its elastic interaction with other d
fects, which is independent of the defect density. It should
noted that there is a restoring force when the defect is
placed relative to the center of mass, even if the defect-de
interaction is neglected.7,19 The second part is the elastic in
teraction between defects within the same solid, which
pends on the defect density. In order to determine the ef
of these energies, let us for simplicity model the interact
of the l th defect with the lattice by a spherically symmetr
harmonic potential of force constanta l . Assume that in the
5-4
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POSSIBLE MICROSCOPIC EXPLANATION OF THE . . . PHYSICAL REVIEW B 65 115415
absence of distortion of the solid, thel th defect lies a dis-
tanceDl from the minimum of its potential well. Letul be
the displacement of thel th defect from its initial position.
We use the usual elastic Green’s function tensor of the
dium at a distancer from the point at which a force is ap
plied at the interface, but for simplicity, we approximate it
the simplified formG(r )5(E8r )21, where E8 is Young’s
modulus.19 Then the equilibrium conditions on theu’s are

ul5~E8a!21a l~Dl2ul !1(
j

~E8Rl , j !
21a j~Dj2uj !,

~7!

wherea is a parameter of the order of the size of the def
andRl , j is the distance between thel th and j th defects. This
equilibrium condition is discussed in more detail in the A
pendix. To lowest order in the interdefect interaction, t
approximate solution forul is

ul5ul
01@11~E8a!21a l #

21(
j

~E8Rl , j !
21a j~Dj2uj

0!,

~8a!

where

ul
05

a l

E8a1a l

D l ~8b!

is the zeroth order approximation@i.e., the solution to Eq.~7!
neglecting the second term on the right hand side of
equation#. Since the defects are randomly distributed ov
the interface, we can estimate the second term~i.e., the sum-
mation overj ) on the right-hand side of Eq.~8a! by its root
mean square~r.m.s.! average which is estimated by integra
ing the square of the summand over the position of thej th
defect which is in contact with the substrate and multiplyi
by the density of asperities in contact with the substrater,
and then taking the square root. Since the angular integ
only give a factor of order unity, we need only consider t
integral over the magnitude ofRl , j , giving an r.m.s. value of
the sum overR21 of order @r ln(W/a)#1/2 whereW is the
width of the interface anda is the mean defect size. ForW
'1 cm anda'1028 cm, @ ln(W/a)#1/2 is of order unity. For
a defect potential of strengthV1 , a l'V1 /b2, whereb is of
the order of a lattice constant. IfV1'1 eV and b'3
31028 cm, a'23103 dyn/cm2. For E8'1012 dyn/cm2,
ul'(a l /E8b)D l'0.06D l . This implies that the elasticity o
the solid prevents the solid from distorting to any significa
degree to accommodate the defects at the interface, w
implies that we are in the weak pinning limit. From the sc
ing arguments of this section, we conclude that there will
no static friction in the macroscopic interface limit. F
stronger defect potentials and/or smaller values ofE8, how-
ever, it is clear that we could also be in the strong pinn
limit, then there is static friction. For almost any surfac
contact only takes place at random asperities of mean
and spacing of the order of microns. In the next section
will be argued when one treats the interface on the multi
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crometer scale as a collection of contacting asperities,
finds in contrast that it is almost certainly in the strong p
ning limit.

III. STATIC FRICTION DUE TO DISORDER
ON THE MICRON LENGTH SCALE

The arguments in the last section seem to imply t
weakly interacting disordered surfaces cannot exhibit st
friction. We shall see, however, that unlike weak atom
scale defects, for which the elastic interaction between th
can dominate over their interaction with the second surfa
for contacting asperities that occur when the problem is st
ied on the multimicrometer scale, the interaction of two co
tacting asperities from the two different surfaces domina
over the elastic interaction between two asperities in
same surface. It is suggested here that this could be res
sible for the virtual universal occurrence of static frictio
Roughness due to asperities is well described by
Greenwood-Williamson~GW! model,16 in which there are
assumed to be elastic spherically shaped asperities on a
face with an exponential or Gaussian height distribution
contact with a rigid flat substrate, especially for relative
light loads. As mentioned in the introduction, Volmer an
Nattermann’s approximate way of accounting for sta
friction17 is not qualitatively different from that of Ref. 16. In
the GW model, the total contact area is given by

Ac52psNRcE
h

`

dsf~s!~s2h!, ~9!

wheref(s) is the distribution of asperity heightss, in units
of a length scales associated with the height distribution,Rc
is the radius of curvature of a typical asperity, andh is the
distance of the bulk part of the sliding solid from the fl
surface in which it is in contact, measured in units ofs.
Since the force of static friction exerted on a single aspe
is expected to be equal to the product of the contact area
a shear strength for the interface, it is proportional to t
quantity.

The number of contacting asperities per unit surface a
is given by

r~h!5~N/A!E
h

`

dsf~s!, ~10!

whereA is the total surface area andN is the total number of
asperities whether in contact with the substrate or not. T
load is given in this model by

FL5~4/3!E8N~Rc/2!1/2s3/2E
h

`

dsf~s!~s2h!3/2. ~11!

A Gaussian distribution is assumed here forf(s) @i.e.,
f(s)5(2p)21/2e2s2/2#.

Let us now apply the equilibrium conditions expressed
Eqs.~7! and~8! ~used in the last section to treat atomic lev
defects!, to the asperities.18 It is argued in the Appendix tha
these equations should give a correct description of cont
ing asperities. The shearing of the junction at the area
contact of two asperities involves the motion of two atom
planes relative to each other, and hence the sliding dista
over which the contact potential varies must be of the or
of atomic distances. Then, if we denote the width of t
5-5
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asperity contact potential well~i.e., the length scale ove
which the contact potential varies! by b, of the order of
atomic spacings, we must choose a typical value fora such
that ab is of the order of the shear rupture strength of t
asperity contact junction ('E8pa2). Thus, a/E8a'a/b
5104. Then, applying Eq.~11b! to the contacting asperities
we find thatul

(0)'Dl , i.e., the contacting asperities lie at th
minima of the contact potential. This is very easy to und
stand. Since the contact potential varies over distances o
order of an atomic spacing, the asperities can all sink v
close to their contact potential minima by moving a distan
of the order of an atomic spacing, with negligible cost
elastic potential energy. This is what distinguishes
present treatment from those of Refs. 7 and 9. In those
erences, it is assumed that continuum mechanics accur
describes the asperity-asperity contact. In contrast, I prop
that it is essential to take into account the fact that the sh
ing stress of such a contact must vary on an atomic len
scale. In this section,a is taken to be a parameter of the ord
of the size of the asperity. Since the contacting asperities
randomly distributed over the interface, we can again e
mate the second term~i.e., the summation overj ! on the
right hand side of Eq.~7! by its root mean square~r.m.s.!
average which is estimated by integrating the square of
summand over the position of thej th asperity, which is in
contact with the substrate, over its position and multiplyi
by the density of asperities in contact with the substrater,
giving an r.m.s. value of the sum overR21 of order
@r ln(W/a)#1/2 whereW is the length of the interface anda is
the asperity size. For W'1 cm and a'1024 cm,
@ ln(W/a)#1/2 is of order unity.

Here, we have considered only micron and atomic len
scales to be important. There can, of course, also be ro
ness on length scales between the latter two. As the loa
increased, asperities on smaller than microm length sc
could potentially also become important. As long as typi
asperity spacings are still much larger than atomic spaci
however, the arguments given in this section should still
ply to them.

Let us now give sample numerical values for some of
quantities which occur in the application of the GW model
this problem. Following Ref. 16, we chooses52.4
31024 mm andRc56.631022 mm, and assume that ther
is a densityr of 4.03103 asperities/mm2. Then by perform-
ing the integrals in Eqs.~9!–~11!, we find that forFL /A
53.9831024N/mm2, whereA is the apparent area of th
interface, the total contact area divided by A is 3.0331025,
and the contact area per asperity from the ratio of Eqs.~9!
and~10! is 2.4431025 mm2. Also, r(h)1/2, which is equal to
the square root of Eq.~10! is 1.11 mm21. Since in the
present casea l@E8a, Eq. ~8a! becomes

ul'Dl1~E8a/a l !$2Dl1@ ln~W/a!#1/2r1/2aDl8%, ~12!

whereDl8 is a vector whose magnitude is of the same or
asul , but it can be in any direction. It is determined by t
contribution toDl from neighboring asperities. In arriving a
Eq. ~12! we have replacedRl , j

21 by its root mean square
value. Using the above numerical estimates of the parame
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in this problem, we find thatr1/2a'1023 and E8a/a l
'1024 from which we conclude thatul'Dl to a good ap-
proximation. This implies that the asperities are always in
strong pinning regime, in which all asperities lie essentia
in their contact potential minimum.

Although it has been argued here that the GW model p
dicts the occurrence of a sufficiently dilute concentration
asperities with strong enough forces acting on them due
the second solid to consider the asperities to be essent
uncorrelated, this still does not necessarily guarantee
there will be static friction, since it has been argued that e
for uncorrelated asperities, static friction will only occur
the asperities exhibit multistability.7,13 The condition for
multistability to occur at an interface,9 namely, that the force
constant due to the asperity contact potential be larger t
that due to the elasticity of the asperity ('E8a), however, is
satisfied, as discussed under Eq.~12!.

In conclusion, when one considers atomically smooth s
faces, the disorder at an interface between two weakly in
acting nonmetallic elastic solids in contact will not result
static friction. When one considers the distribution of aspe
ties that occur on multimicrometer length scales, howev
one finds that the asperities are virtually always in t
‘‘strong pinning regime,’’ in which asperities always lie clos
to a minimum of the potential due to their contact with
second solid. This accounts for the fact that there is alm
always static friction. Muser and Robbins’ idea,2 however, is
not invalidated by this argument. Their result will still app
for a smooth crystalline interface. It will also apply in th
present context to the contact region between two asperi
implying that for a clean interface the shear force betwe
contacting asperities is proportional to the square root of
contact area.20 The GW model predicts for this case that th
average force of friction is proportional to the 0.8 power
the load,16 but this load dependence is not significantly d
ferent from when the asperity contact force is proportiona
the contact area. This is illustrated in Fig. 1, where the b
the integral overs in Eq. ~9! and the integral

E
h

`

dsf~s!~s2h!1/2 ~13!

are plotted as a function of the dimensionless integral ovs
in Eq. ~11! for the load. This quantity, and hence the sta
friction, are approximately proportional to the 0.8 power
the load. Furthermore, some simple arguments show tha
though the Muser-Robbins2 picture, when the effects of as
perities considered in the present work are taken into
count, does not allow one to conclude that there will be
static friction for clean surfaces, it does predict that the sta
friction for clean surfaces is much smaller than what is n
mally observed. The argument is as follows: If the interfa
between two asperities is either in the strong pinning limit
using the Muser-Robbins2 picture, it contains a submono
layer of mobile molecules, the force of static friction p
asperity is given by

Fs /N5Er^Ac&, ~14!
5-6
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where one expects for the shear rupture strength at the a
ity contact regionEr

Er'cV0 /b3, ~15!

wherec is the concentration of defects at the interface,V0 is
the strength of the defect potential, andb is of the order of a
lattice constant. Using the sample parameters given earlie
this section, we obtain as an estimate of the static frict
coefficient

ms5Fs /FL'0.1. ~16!

According to the Muser-Robbins argument, for clean s
faces, Eq.~14! is replaced by

Fs /N'Er^Ac~b2/cAc!
1/2&5Erb^Ac

1/2&/c1/2 ~17!

which when one again substitutes the sample parame
given earlier in this section gives

ms'1025. ~18!

On the basis of this argument, one concludes that the i
static friction coefficient between clean, weakly interacti
surfaces in the light load limit, is much smaller than wh
one typically observes.

IV. CONCLUSIONS

The main conclusions are as follows. There will alwa
be static friction for any macroscopic size interface~i.e., an
interface with lateral dimensions much larger than typi
asperity spacing!. The physical reason for this is that th
potential acting between two asperities in contact varies
length scales of the order of typical atomic spacings. Si
this distance is much smaller than typical asperity spac
all asperties can sink to their potential minima with neg
gible cost in elastic potential energy of the contacting soli

FIG. 1. The integral overs in Eq. ~9! ~the lower curve! and the
integral overs in Eq. ~13! ~the upper curve! are plotted as a function
of the integral overs in Eq. ~11!, which is proportional to the load
All quantities are dimensionless.
11541
er-

in
n

-

rs

al

t

l

n
e

g,

.

As a consequence, when an external stress is applied
asperities will be pushed out of their potential minima
almost the same amount, resulting in a net force of st
friction. The mechanism of Ref. 2 can still be applied to t
area of contact between two contacting asperities, howe
It can result in very small~although still nonzero! values for
the static friction between two macroscopic solids.
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APPENDIX: EQUILIBRIUM CONDITION
FOR PINNING CENTERS AT AN INTERFACE

The interaction forces between two solids in contact ac
various points along the interface for atomically flat surfac
are expected to act at the points of contact of the atom
both solids at the interface. Since it has been establis
however, that weakly interacting perfect incommensur
surfaces exhibit no static friction,1–3 we expect that any static
friction that occurs is due to defects. Therefore, let us c
sider the interaction of point defects, randomly distribut
over the interface. We must consider both the potentia
interaction of a defect of one surface with an atom on
second surface and the elastic energy cost that one mus
when the solid distorts in order to minimize the interfac
and elastic potential energies. Iff j represents the force actin
on an atom at sitej in the solid due to its interaction with a
second solid with which it is in contact, the displacement
the atom at thel th lattice siteul is given by

ul5Gl , j•f j , ~A1!

where

Gl , j5Dl , j
21 , ~A2!

whereDl , j is the dynamical matrix.17 Then Eq.~A1! can be
written as

ul5Gl ,l•f l1(
j Þ l

Gl , j•f j . ~A3!

Following the discussion in Ref. 14, we find that

Gl , j5v~2p!23(
g
E d3keik(Rl2Rj )

êk
gêk

g

mvg
2~k!

, ~A4!

wherem is the mass of an atom in the solid,êk
g is the unit

vector which gives the polarization of thegth phonon mode
of wave vectork, Rj is the location of thej th atom, andv is
the unit cell volume. In order to simplify the problem, let u
replace the tensorêk

gêk
g , by the unit tensor, which should

give results of the correct order of magnitude. Then Eq.~A4!
becomes when the integral overk is done in the Debye ap
proximation
5-7
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Gl ,l'
9

mc2kD
3 E

0

kD
dk

sin~kR!

k
, ~A5!

where R5uRl2Rj u, c is the mean sound velocity and w
have used the fact that the Debye wave vectorkD is related
to v by

v~2p!234pkD
3 /351. ~A6!

In Ref. 17, it is shown that the elastic constants are given

2~1/2v !(
R

R•D~R!R. ~A7!

The magnitude of a typical value of an elastic constantE is
given by

E5~1/2!~2p!23b2(
g
E d3kmvg

2~k!. ~A8!

When Eq.~A8! is evaluated in the Debye approximation, w
obtain

E5~3/10p2!mc2kD
5 b2. ~A9!

For kDR@1, we find using Eqs.~A5! and ~A9!, taking kDb
'p

Gl , j5~E8R!21, ~A10!

whereE85(40/9)E. For kDR!1,

G'~E8b!21. ~A11!

For simplicity, we assume thatf j has the form

f j5a j~Dj2uj !. ~A12!

Then, from Eqs.~A1!, ~A3!, ~A10!, ~A11!, and ~A12!, we
obtain Eq.~7!.

The equilibrium condition expressed in Eq.~10! can also
be applied to an interface for which the contact takes pl
only at a dilute concentration of randomly placed contact
asperities, giving for the displacement at a point on thel th
asperity

ul5(
j
E d2r j8~E8ur l2r j2r j8u!

21p~r j8!, ~A13!

wherer j is the location of a central point in the contact ar
of the j th asperity,r j8 gives the location of an arbitrary poin
on this asperity relative tor j , andp(r j8) is the shear stress a
the pointr j8 . We have replaced the summation over atom
positions in Eq.~A1! by the integral overr j8 over the contact
area of thej th asperity. In the dilute asperity limit, in whic
ur l2r j u@r j8 , Eq. ~A13! is to a good approximation

ul5(
j Þ l

~E8ur l2r j u!21f j1E d2r l8~E8ur l1r l8u!
21p~r l8!,

~A14!

wheref j5*d2r j8p(r j8), where the range of integration is ove
the contact area of thej th asperity. For simplicity, we may
11541
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replacep(r l8) in the integral overr l8 by its average value
denoted byf l /(pa2). Then we need to estimate the integr

E d2r 8ur1r 8u21, ~A15!

wherer denotes a point on thel th asperity and the integra
runs over the contact area of this asperity. Taking the con
area to be a circle of radiusa, this integral can easily be
shown to be equal to

4E
0

`

dr8r 8~r 1r 8!21KS 4rr 8

r 1r 8
D , ~A16!

whereK(k) is the complete elliptic function. It has a loga
rithmic singularity atr 85r , which is integrable, and is o
order 1 away from the singularity. Consequently, the integ
is of ordera and we obtain a contribution of order (E8a)21f l
for the last term in Eq.~A14!. Hence Eq.~A14! becomes

ul5~E8a!21f l1(
j Þ l

~E8ur l2r j u!21f j . ~A17!

If for simplicity, we replacef j by a j (Dj2uj ), as was done in
Sec. II, and we obtain the equilibrium condition for the d
fects used in that section. Sinceul was estimated in tha
section to be only 0.06Dl , the use of the harmonic approx
mation was not really justified in Sec. II. It was only use
there for simplicity to illustrate the fact the system is in t
weak pinning limit. In contrast, in the application of Eq
~A14! to the multiasperity problem in Sec. III, we shall see
the next paragraph that this approximation is justified.

In zeroth order in the interasperity interaction, we hav

ul
(0)'~E8a!21f l5~E8a!21f @~Dl2ul

(0)!/b#, ~A18!

whereb represents the length scale over whichf varies with
ul

(0) , which was argued in Sec. III to be of the order of
atomic spacing. Making the substitution (Dl2ul

(0))5bv, Eq.
~A18! becomes

E8a~Dl2bv!5f~v!. ~A19!

Sincef oscillates on a length scaleb, it will almost certainly
have a zero in the vicinity ofv5D/b. Then sinceE8ab
!u]f/]vxu,u]f/]vyu, there will be solutions to Eq.~A18! with
ufu much less than its maximum value, because if we plot
left hand side of Eq.~A19! versusv for v alongD, the slope
of the straight line on the left hand side is much less than
slope of thef versusv curve on the right hand side. Henc
the point of intersection of these two curves is at a po
which is much below the maximum value off. Thus, we are
justified in expandingf in a Taylor series inv around the
nearest zero off to v5D/b. If the potential thatf is derived
from is chosen for simplicity to be a spherically symmet
function ofv, we may writef(v)'av, wherea is a constant.
5-8
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