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Possible microscopic explanation of the virtually universal occurrence of static friction
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Perturbation theory, simulations, and scaling arguments predict that there should be no static friction for two
weakly interacting, flat, atomically smooth, clean solid surfaces. The absence of static friction results from the
fact that the atomic-level interfacial potential energy is much weaker than the elastic potential energy, which
prevents the atoms from sinking to their interfacial potential minima. Consequently, we have essentially two
rigid solids, for which the forces at randomly distributed “pinning sites” cancel. It is shown here that even
fluctuations in the concentration of atomic-level defects at the interface do not account for static friction. The
sliding of contacting asperities, which occurs when the problem is studied at the multi-micrometer length scale,
relative to each other, however, involves the shearing of planes of atoms at the interface between a pair of
asperities from the two surfaces in contact. Since this results in a force for the interaction of two in contact
asperities which varies over sliding distances of the order of an atomic spacing, the contacting asperities at the
surface are able to sink to their interfacial potential minima, with negligible cost in elastic potential energy.
This results in static friction.
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I. INTRODUCTION models used for charge density wav€DW'’s), in which the
CDW is modeled as an elastic medium moving through a
It is well known to every student in an elementary physicssolid containing impurities distributed randomly throughout
class that kinetic friction has very little velocity dependenceit, there is no pinning in four or more dimensich& con-
in the slow sliding speed limitoften called “dry friction”).  trast, in fewer than four dimensions, there is pinning. For a
Yet many atomic-level treatments of friction fail to give this model used for frictiorf, consisting of a three dimensional
behavior. For example, molecular dynamics simulations aneélastic medium moving over a surface containing a random
analytic calculation’s® show that while commensurate inter- array of point defects, the critical dimension iS 8s a con-
faces are pinned for applied forces below a critical valuesequence, although if the defect potential is sufficiently large,
(i.e., exhibit static friction, incommensurate surfaces are notthere will be static friction and “dry friction,” for weak de-
pinned and exhibit viscous frictiofi.e., friction proportional fect potentials, there will be no static friction and the kinetic
to the sliding velocity for sufficiently weak interfacial friction will be viscous(i.e., linear in the sliding velocity
forces. Perturbation theory calculations done for a nonmetalfhe nonperiodic “defect potential” acting across the inter-
lic monolayer film with underdamped phonons sliding on aface could be due to disorder on any length scale in the
nonmetallic substrate with some disorder, however, givgroblem. For example, it can be due to atomic level point
nearly velocity independent sliding frictibrand exhibit a  defects, such as vacancies and substitutional impurities at the
divergence in the mean square atomic displacement in thaterface, as has been assumed in Refs. 4 and 5, but it can
limit of zero sliding velocity. The latter behavior signifies also be due to the fact that the surfaces of the sliding solids
that the film will be pinned below a critical applied force. are only in contact at micron scale randomly located protru-
This behavior has been confirmed by recent molecular dysions, commonly known as asperities. On the atomic scale, it
namics calculations on such a systémerturbation theory can also be due to adsorbed film molecdles.
calculations done for a three-dimensional film sliding on a In contrast to atomic level point defects, however, asperi-
substrate, however, give viscous friction. This result is conties and adsorbed molecules possess internal structure and as
sistent with the notion that without multistability, there can-a consequence if they are sufficiently flexible, they can ex-
not be “dry friction” due to vibrational excitations in an hibit multistability (i.e., the existence of more than one stable
elastic solid®’ Dry friction is possible for the monolayer configuration needed for the Tomlinson mdde& apply.
flm, as mentioned above, however, because the twoCaroli and Nozieréproposed an explanation for “dry fric-
dimensional phonon density of states of the film does notion” based on the Tomlinson mod®lin the Tomlinson
drop to zero as the frequency goes to zero, as it does for model the two bodies which are sliding relative to each other
three-dimensional solitl.As the sliding velocity drops to at relatively slow speeds remain stuck together locally until
zero, the “washboard frequency(the sliding velocity di- their centers of mass have slid a small distance relative to
vided by a lattice constantirops to zero. Since the phonon each other, at which point the stuck configuration of the two
density of states does not drop to zero, there are phonorsurfaces becomes unstable and the two surfaces locally slip
present at arbitrarily low frequency, which can be excited byrapidly with respect to each other until they become stuck
the substrate potential. Since the density of states does fall 'gain, and the process repeats itself. The slipping motion that
zero as the frequency falls to zero in three dimensions, howtakes place can either be local or can involve motion of the
ever, the force of friction falls to zero as the velocity does. Inbody as a whole. Then the actual friction acting locally at the
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interface could be viscous, but the rapid motion that takesvith the very light load limit, in which the hard cores of the
place, even at slow sliding speeds, could still result in aatoms of the two surfaces which are in contact are not being
sizable amount of friction, even in the limit of vanishing pressed together with a lot of force. These treatments, how-
average sliding velocity. In the Caroli-Noziere mddigiter-  ever, can be thought of as one step closer to describing fric-
face contact only occurred at a very dilute concentration ofion in every day applications, in that the loads are higher,
interlocking asperities. It is the rapid stick-slip motion of than the extreme limit of contactless frictibhlt is felt that
these asperities, which gives rise to dry friction on the averit is important to study such a limiting case, as a first step
age in this model, if we assume that all of the kinetic energytowards understanding the higher load cases that occur in
released in the slip is dissipated, which is probably true irengineering applications. No claim is being made here that
the zero velocity limit. This mechanism would seem to implythe present discussion will apply to much higher loads,
that the occurrence of dry friction depends on the existencehich could be dominated by gross plastic deformations and
of multistability; in situations in which the asperities are notwear. It is hoped, however, that the present discussion will
multistable, there will be neither “dry friction” nor static stimulate more precise experiments in the light load limit, in
friction. It is argued that in the absence of plasticity in the order to understand the fundamental mechanisms for friction.
model, the maximum force of dynamic friction, in the veloc- In Sec. Il, a discussion is given of the scaling theoretic
ity approaches zero limit, must be equal to the force of statidcreatment of static friction. This is an outgrowth of a similar
friction. It was pointed out in recent work by these workers,treatment by Fisher of the pinning of charge density waves.
however, that the asperities are generally too stiff to undergét is found that, at least for surfaces with defects that produce
the Tomlinson model-like instabilities because of theira relatively weak potential, the Larkin domaifi®., the re-
shap€’. Therefore, they proposed alternative mechanisms. lgions over which the solid distorts to accommodate defects
one mechanism, it is assumed that there exists a glassy filat the interfacgare as large as the interface, as was found by
at the interface in the experimental systems that they arPersson and Tosatti using perturbafidheory. As a conse-
trying to describe. Glassy materials possess metastabtpience, the forces from the various interfacial defects tend to
atomic configurationgthe equivalent of “two-level systems” cancel each other, resulting zero for the average static fric-
which are believed to contribute to the specific hedtich  tion. Since all that remains are fluctuations, which are pro-
can exhibit Tomlinson model-like instabilities during sliding, portional to the square root of the number of defects at the
similar to those found by Falk and Langer in their study ofinterface, this implies that the static friction per unit interface
the shearing of glassy materidfsThis mechanism will, area decreases as the inverse of the square root of the inter-
however, only be the correct explanation of “dry friction” face area, as was found for perfect crystalline interfaces by
for glassy interfaces. It is not clear, however, that all inter-Museret al?
faces are glassy. Het al? proposed that the occurrence of  In Sec. IlI, it is shown that when one takes into account
static friction between elastic solids requires the existence ahe distribution of contacting asperities at the interface that
adsorbed mobile molecules at the interface. It is important tmccurs when the problem is studied at the multimicrometer
know if the occurrence of a glassy interface or adsorbedcale, one finds that the asperities are in the “strong pinning
mobile molecules is a requirement for the occurrence ofimit,” implying that there is static friction. This is shown to
static friction. If it is, it would imply that clean interfaces be a consequence of the fact that the shear force between two
between crystalline solids would not exhibit static friction. contacting asperities varies by a large fraction of its magni-
Caroli and Nozieréalso proposed that adhesive forces couldtude as the asperities are slipped relative to each other over
provide the required multistabilitthecause of the so called slip distances of the order of atomic spacings. This must be
“jump to contact” instability) to give friction at slow speed. true for a wide range of interfaces, both crystalline and dis-
It is not clear that this will be significant for asperities evenordered.(The only assumption that needs to be made is that
under light loads, however. In the absence of multistabilitythe interface is made of planes of atoms in conta&s a
there is good reason to believe that there will be neither staticonsequence, essentially all asperities can sink to their con-
friction nor dry friction, at least for light enough loads to put tact potential minimum by moving a distance parallel to the
us in the “weak pinning limit” in the language of the charge interface of the order of a lattice spacirigthich is much
density wave and vortex problems first studied by Larkin andsmaller than typical interasperity spacingith negligible
Ovchinikov! and Fukuyama, Lee, and RiteThe existence cost in elastic energy. Thus, when an external stress is ap-
of multistability has also been shown to be a condition forplied, the friction forces from all of the asperities will act
pinning of CDW's™® (One way of understanding this is that coherently, resulting in a net force of static friction. Further-
if there is static friction, the sliding velocity of the solid will more, the force constant for the contact potential is much
only be nonzero if a force above the force of static friction islarger than that due to the elastic force constant of the asperi-
applied to the body. Alternatively, if we plot the force as aties. As a consequence, the asperities satisfy the criterion for
function of velocity, we can view this as implying that the the occurrence of multistability, shown in Ref. 7 to be a
force of friction approaches a nonzero value as the center akquirement for the occurrence of static friction. This treat-
mass velocity approaches zero. The arguments in this refement is in contrast to the treatment in Ref. 9, which argues
ence and Ref. 7 tell us that there must be multistability forthat in the weak coupling limit the Larkin length for the
this to occun asperities will be much larger than the width and length of
It must be stressed that the present work, as all previouthe interface. It does not, however, tell us anything about
work on atomic level theories of friction quoted above, dealswhether the criterion for static friction that | use is satisfied,
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namely that the all of the asperities can sink to a contacbver a disordered substrate potential under the influence of a
potential minimum with negligible cost in elastic energy of force F, which is applied to each atom in the crystal. Then
the sliding solid. To put it another way, my argument for thewe can write the equation of motion as

lack of static friction due to atomic level defects in the weak

pinning limit, given in Sec. Il, is based on the scaling argu- mu+mvt=> DR —R:)U+f(R)+F 1
ments that | apply in that section to E@), which show that Ve % (Rj=Rj)uj +1(Ry) +F, @

for a three-dimensional solid sliding over another saqbd . . .
substratgthere exist only two regimes. There is a weak pin_whergD(Rj —Rj/) is the force constant matrix for the lattice,
f(R;) is the force due to the substrate on jtie atom, ancR;

ning regime, in which the elastic forces of the solid dominate

over the interfacial forcegand the Larkin length is effec- is the location of thgth atom in the lattice. As a result of
tively infinite) and a strong pinning regime in which the

slow speed sliding of the lattice over the disordered substrate
interfacial forces dominatén which the larkin length is ef- Potential, low frequency acoustic phonons are excited. Since
fectively very small. In the former regime, there is no static (N€sé modes have wave veckosmall compared to the Bril-
friction for a macroscopic solid and in the latter regime, re-louin zone radiusy;, the displacement of thigh atom is a
gime there is static friction. | find that for weak defect po- SIowly varying function ofR;. Then, following the discus-
tentials, atomically flat surfaces can be in the weak pinningion in Ref. 17, we can write the first term on the right hand

regime, and exhibit no static friction, but, in contrast, | find Side of Eq.(1) as
that when the problem is studied on the multiasperity length D' (i-1
) ; (i~ *Vu;, 2
scale for surfaces that are only in contact at micron scale 175
asperities, the interfacial forces dominate over the elastisvhere D'(k) is the Fourier transform oD(R;—R;:) and
forces, implying that we are in the strong pinning regime,V,= (d/9X;,d/3Y;,dl 9Z;), whereR; = (X;,Y;,Z;) to a good
and there is static friction. approximation. Furthermore, to a good approximation we
Volmer and Natterman have developed a theory to at- can expandD’ to second order iv; . Equation(1) then
tempt to explain Amonton’s law on a microscopic level. becomes
Their treatment of Amonton’s law is qualitatively similar to ) _
that of Greenwood and Williamsdfi.Both treatments deter- mu+myu;= —vE’Vquj,+f(Rj)+ F, (3
mine the area of contact as a function of load, and ther\]/vhereE’ is an effective Youna's modulus andis the unit
determine the force of static friction by multiplying it by an Il vol h Ig isher’ i &
estimate of the shear strength for the contacting asperities. el volume. we can then apply Fisher $ scaling argurnemnt
the resulting equation. This is accomplished by dividing the

the estimate of the static friction in Ref. 15, no account isSolid into blocks of of lenathL. lattice sites parallel to the
taken of the possibility that forces acting on the various con- 9 P

i H H H _
tacting asperities can act in arbitrary directions and could, idﬂtez;‘]a(iethand_ dilra:lttlrﬁei sr|1tes rnorr:]]al tcr)] thean;:lrrfiace,la:VTum
principle, in the weak load limit cancel out. Their treatment'"d &t (NESE dIMENSIONS are chosen sothaaries Sowly

for sliding surfaces is only able to give “dry friction” if the over each such a block. Then integrating £3).over a block

surface height correlators have a cusp in their position deWhICh lies at the interface, we obtain

pendence. Analogies to charge density wave dynamics are 20 rpant o P P
used to argue that such behavior is expected to occur but will LA Tmuy, +moyuy J= = (L2 LLAELD Vi ou;,
disappear on much smaller length scalesesumably com- —Lf'(R))+L2L'F, (4
parable to atomic dimensiong his return to analytic behav- )
ior of the correlator on smaller length scales again leads twhereV'? denotes the Laplacian in the rescaled coordinates
dynamic friction which approaches zero as the velocity apf(X;,,Y{,,Z,)=(X;/L,Y;/L,Z;/L")], which are the coor-
proaches zerdi.e., essentially viscous friction dinates of the centers of the boxes. Here we made use of the
fact thatu; varies on length scaldsandL’, when we trans-
form to the block coordinates. Hence, we may replﬁ%eby
L‘ZV’]-2 andf(R;) by Lf'(R;,) The substrate force is only
multiplied by L because the interaction of the defects with a
In this section, we will treat the problem of static friction single block at the surface is proportional to the square root
due to disorder which results from atomic level defects, suclof the surface area of the block. For a thick sdiie., one
as vacancies or substitutional impurities using scaling arguwhose lateral and transverse dimensions are comparable
ments. In the next section, we will consider random contactandL’ are always of comparable magnitude. Then, we con-
ing asperities, which occur when the surface is viewed on thelude that no matter how large we makendL’, the ratio
micron length scale. of the elastic forcdthe first term on the right hand sidand
Following Fisher’s treatment of the charge density wavethe substrate forcéhe second term on the right hand side
(CDW) problem? it is clear that we can also use a scaling will remain the same. This implies that we are at the critical
argument for the friction problem in order to determine dimension for this problem since when the length scéles
whether the pinning potential becomes irrelevant as thendL' are increased, neither the elasticity nor the substrate
length scale becomes large. In order to accomplish this, let Usrce becomes irrelevant. Whichever one dominates at one
formulate this problem in a way similar to the way that length scale will dominate at all scales. Equatidhimplies
Fisher does, by considering the crystal lattice to be slidinghat the force of static friction per unit area acting at the

II. SCALING TREATMENT AT THE ATOMIC LEVEL
OF STATIC FRICTION
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interface is inversely proportional to the square root of thethe attempt to slide the solid, and if it lies in the other region,
interface area. Instead of using the equations of motion, as ke force on the atoms that it interacts with will be in the
done here, we could alternatively formulate these scaling apposite direction. These two regions are, of course, frag-
guments by minimizing the energy of the syst&m. mented. Then the net force on a block of lengthat the
Next, let us consider the effect of fluctuations in the defectnterface due to the substrate is proportional LtScP,
concentration, for a thick solid. To do this, we again dividewhere éc is the mean difference in defect concentrations
the solid into boxes of length and examine what percentage between the two regions in the block defined abésech
of the blocks at the interface contain a large enough concerthat the mean defect concentration over the whole block is
tration of defects to put these blocks in the “strong pinning” andP is the probability of having a concentration difference
regime(i.e., the regime in which the substrate forces domi-oc between these two regions. The un-normalized probabil-
nate over the elastic forces between the blocks examine ity of having a concentration differencte between the two
whether this is possible, let us define a parameter regions in a block is given by
=V,/E'b%, whereb is a lattice spacing and/; is the
strength of the potential due to a defect acting on an atom. N,!
Let n,=c’L? be the number of defects within a particular 1 1
strongly pinned block and’ is the defect concentration ncll(ENl_ncl)!(CNl_ncl)!(ENl_CN1+ ncl)!
large enough for it to be considered a strongly pinned block, (5)
i.e., a block whose interaction with the substrate is much
larger than the elastic interaction between such blogksis ~ Where the number of atoms in a blobk =L? and the num-
concentration is necessarily noticeably larger than the meaper of atoms in the region in which the net force is against
defect concentration on the interfac&hen the interaction of  the direction in which we are attempting to slide the solid
a typical strong block with the substrate defects isng=(1/2)[c+(1/2)6c]N;, whose normalized smalic ap-
A (c'L?)Y2 The interface area surrounding each strong blockroximation is
is the total interface area divided by the number of strong
blocks at the interface, which is equal®a/(bL)?, whereP 3Ny )
is the probability of a particular block being a strong one P~exp — 2c(1—c) oc
[A/(bL)? is clearly equal to the total number of blocks at the
interface, both strong and wepkrhen we obtain i§L)?/P Since in the largeN; limit P decreases exponentially with
for the area surrounding a strongly pinned block. Then théncreasingN;, unlesssc~N; *?, we conclude that the sub-
typical length for the elastic energy acting between twostrate defect force on the block will not increase with in-
strong blocks isL’b, whereL’=L/P¥2 The ratio of the creasingN; and hence in the largd, limit, the elastic force
total elastic energy associated with each strong bloé&kKt®  on the block, which we showed above is proportional to
is the product of the volume surrounding a strongly pinned= N¥2 will dominate. This implies that this type of concen-
block=(L")® with (L") "2, sinceV?uxL’ "2 orL’. Thenthe tration fluctuation will not lead to static friction for a macro-
criterion for a block to be a strong block M(c’L?)Y?>>L"  scopic size block.
or A\>(c'P) Y2 Sincec’P<1, this violates our previous In the discussion under E¢4), it was argued that for an
assumption thak <1. Thus, we conclude that such fluctua- interface between two three-dimensional solids, which are
tions in the defect concentration will not lead to static fric- sliding relative to each other, if the interfacial force domi-
tion. nates over the elastic forces at one length scale, it dominates
If we assume that the sliding solid and the substrate surat all length scales, implying that there is static friction for
faces at the interface are incommensurate and that the defectgcroscopic solids. On the other hand, if the elastic forces
are either vacancies or substitutional impurities, which arelominate at one scale, they will dominate at all length scales,
centered around particular lattice sites in the substrate, theimplying that there is no static friction for macroscopic sol-
is another type of concentration fluctuation. For a uniformids. Let us now examine whether or not the interfacial domi-
random distribution of defects over the substrate lattice siteg)ates for an interface between two flat crystalline solids with
surface atoms of a completely rigid sliding solid will be defects in contact. The energy of the interface consists of two
found at all possible position within the various defect po-parts. One part is the single defect energy, which consists of
tential wells, which results in the net force on the solid due tathe interaction energy of a defect with the substrate plus the
defects being zero on the average. Let us again divide thelastic energy cost necessary for each defect to seek its mini-
solid into blocks of length., but now the concentration of mum energy, neglecting its elastic interaction with other de-
defects in each block will be taken to be equal to the mearfiects, which is independent of the defect density. It should be
defect concentration. We will look for blocks in which the noted that there is a restoring force when the defect is dis-
defects are distributed such that there is a sizable concentrplaced relative to the center of mass, even if the defect-defect
tion of atoms located in that region of defect potentials, forinteraction is neglecte'® The second part is the elastic in-
which the force on the block is opposite the direction interaction between defects within the same solid, which de-
which we are attempting to slide the block, due to the depends on the defect density. In order to determine the effect
fects. Then we can divide each block into regions of equabf these energies, let us for simplicity model the interaction
size. If a defect lies in one region, the atoms which interacof the Ith defect with the lattice by a spherically symmetric
with the defect will have a force exerted on them opposingharmonic potential of force constaat. Assume that in the

(6)
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absence of distortion of the solid, thth defect lies a dis- crometer scale as a collection of contacting asperities, one
tanceA, from the minimum of its potential well. Les, be  finds in contrast that it is almost certainly in the strong pin-
the displacement of thith defect from its initial position. NiNg limit.
\é\(e use the.usual elastic Greens funcuqn tensor of.the me- lll. STATIC FRICTION DUE TO DISORDER
ium at a distance from the point at which a force is ap-
. . ; .. . - ON THE MICRON LENGTH SCALE
plied at the interface, but for simplicity, we approximate it by
the simplified formG(r)=(E’r) !, whereE’ is Young's The arguments in the last section seem to imply that
modulus®® Then the equilibrium conditions on thes are weakly interacting disordered surfaces cannot exhibit static
friction. We shall see, however, that unlike weak atomic
scale defects, for which the elastic interaction between them
u=(E'a) (A —u)+ > (E’Ru)_laj(Aj —up), can dominate over their interaction with the second surface,
i for contacting asperities that occur when the problem is stud-
() ied on the multimicrometer scale, the interaction of two con-
. . tacting asperities from the two different surfaces dominates
wherea is a parameter of the order of the size of the OIefeCIi)ver Et]Jhe zlastic interaction between two asperities in the

andR, ; is the distance between thh andjth defects. This  game gurface. It is suggested here that this could be respon-
equilibrium condition is discussed in more detail in the Ap-gjhje for the virtual universal occurrence of static friction.

pendix. To lowest order in the interdefect interaction, theRoughness due to asperities is well described by the

approximate solution fou, is Greenwood-Williamson(GW) model*® in which there are
assumed to be elastic spherically shaped asperities on a sur-
face with an exponential or Gaussian height distribution in

u=ul+[1+(E'a) e ] 12 (E'R ) tay(A—uf), contact with a rigid flat substrate, especially for relatively
. (8a) light loads. As mentioned in the introduction, Volmer and
Nattermann’s approximate way of accounting for static
where friction'’ is not qualitatively different from that of Ref. 16. In
the GW model, the total contact area is given by
wW=—"2 4, 8b) AczszRCf dsé(s)(s—h), @
E'a+ a) h

where ¢(s) is the distribution of asperity heighss in units

of a length scaler associated with the height distributidR,

neglepting t.he second term on the right ha.nd.side of thes the radius of curvature of a typical asperity, anés the
equatior}. Since the defects are randomly distributed overgisiance of the bulk part of the sliding solid from the flat
the interface, we can estimate the second teren, the sum-  g;rface in which it is in contact, measured in units caf

mation overj) on the right-hand side of Eq8a) by its root  gince the force of static friction exerted on a single asperity
mean squarér.m.s) average which is estimated by integrat- js expected to be equal to the product of the contact area and
ing the square of the summand over the position ofjthe  a shear strength for the interface, it is proportional to this
defect which is in contact with the substrate and multiplyingquantity.

by the density of asperities in contact with the substygte The number of contacting asperities per unit surface area
and then taking the square root. Since the angular integrals given by

only give a factor of order unity, we need only consider the .

integral over the magnitude &, ;, giving an r.m.s. value of p(h)Z(N/A)f dse(s), (10)

the sum ovelR™* of order[p In(W/a)]*? where W is the h

width of the interface and is the mean defect size. F&  \yhereA is the total surface area ahdis the total number of

~1 cm anda~10"° cm, [In(W/a)]"?is of order unity. For  asperities whether in contact with the substrate or not. The
a defect potential of strengt¥;, a,~V,/b?, wherebis of  |pad is given in this model by

the order of a lattice constant. ¥,;~1 eV and b~3
X108 cm, a~2x10® dyn/cnf. For E’~10% dyn/cnt , 12 3/2J'°° 312
’ ’ FL=(4/139 E'N(R./2 d —h)*< (11
u~(a;/E'b)A,~0.0&\, . This implies that the elasticity of L=(RE'NRSDTo™ | dse(s)(s—h)™= (A1)
the solid prevents the solid from distorting to any significant . i .
degree to accommodate the defects at the interface, whidh (Sau(szs 'a)n_l(/jz'irslg%uon 's assumed here i(s) [ie.,
= a .

implies that we are in the weak pinning limit. From the scal-d’ I . .
b b 9 Let us now apply the equilibrium conditions expressed in

ing arguments of this section, we conclude that there will beEqs.(?) and (8) (used in the last section to treat atomic level

no static friction in tr_le macroscopic interface ,Iimit. For defects, to the asperitie¥? It is argued in the Appendix that
stronger defect potentials and/or smallgr valuequhoyv- . these equations should give a correct description of contact-
ever, itis clear that We'COU.|d'aISO be in the strong pmnmging asperities. The shearing of the junction at the area of
limit, then there is static friction. For almost any surface, coniact of two asperities involves the motion of two atomic
contact only takes place at random asperities of mean siz§anes relative to each other, and hence the sliding distance
and spacing of the order of microns. In the next section ityyer which the contact potential varies must be of the order

will be argued when one treats the interface on the multimiwf atomic distances. Then, if we denote the width of the

is the zeroth order approximatidne., the solution to Eq.7)
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asperity contact potential weli.e., the length scale over in this problem, we find thatp?a~10% and E'al/«,
which the contact potential variedy b, of the order of ~10“ from which we conclude that,~A, to a good ap-
atomic spacings, we must choose a typical valuesf@uch  proximation. This implies that the asperities are always in the
that ab is of the order of the shear rupture strength of thestrong pinning regime, in which all asperities lie essentially
asperity contact junction ~E’wa?). Thus, a/E'a~alb in their contact potential minimum.

=10* Then, applying Eq(11b) to the contacting asperities, Although it has been argued here that the GW model pre-
we find thatu{®~ 4, , i.e., the contacting asperities lie at the dicts the occurrence of a sufficiently dilute concentration of
minima of the contact potential. This is very easy to under-asperities with strong enough forces acting on them due to
stand. Since the contact potential varies over distances of tiBe second solid to consider the asperities to be essentially
order of an atomic spacing, the asperities can all sink veryncorrelated, this still does not necessarily guarantee that
close to their contact potential minima by moving a distancghere will be static friction, since it has been argued that even
of the order of an atomic spacing, with negligible cost infor uncorrelated asperities, static friction will only occur if
elastic potential energy. This is what distinguishes thehe asperities exhibit multistabilify> The condition for
present treatment from those of Refs. 7 and 9. In those refnultistability to occur at an interfacenamely, that the force
erences, it is assumed that continuum mechanics accuratedpnstant due to the asperity contact potential be larger than
describes the asperity-asperity contact. In contrast, | propogbat due to the elasticity of the asperity E'a), however, is
that it is essential to take into account the fact that the sheapatisfied, as discussed under Eip).

ing stress of such a contact must vary on an atomic length In conclusion, when one considers atomically smooth sur-
scale. In this sectiora is taken to be a parameter of the order faces, the disorder at an interface between two weakly inter-
of the size of the asperity. Since the contacting asperities ar@cting nonmetallic elastic solids in contact will not result in
randomly distributed over the interface, we can again estistatic friction. When one considers the distribution of asperi-
mate the second terrfi.e., the summation ovej) on the ties that occur on multimicrometer length scales, however,
right hand side of Eq(7) by its root mean squar@.m.s)  one finds that the asperities are virtually always in the
average which is estimated by integrating the square of th&trong pinning regime,” in which asperities always lie close
summand over the position of thj¢h asperity, which is in  to @ minimum of the potential due to their contact with a
contact with the substrate, over its position and multiplyingsecond solid. This accounts for the fact that there is almost
by the density of asperities in contact with the substggte always static friction. Muser and Robbins’ idehpwever, is
giving an rm.s. value of the sum oveR ! of order notinvalidated by this argument. Their result will still apply

[p In(W/a)]¥2 whereW is the length of the interface areds ~ for @ smooth crystalline interface. It will also apply in the
the asperity size. ForW=1cm and a~10*cm, present context to the contact region between two asperities,

[In(W/a)]¥2is of order unity. implying that for a clean interface the shear force between

Here, we have considered only micron and atomic |engtwontacting asperities is proportional to the square root of the
scales to be important. There can, of course, also be rougontact ared” The GW model predicts for this case that the
ness on length scales between the latter two. As the load Rverage force of friction is proportional to the 0.8 power of
increased, asperities on smaller than microm length scaldge load:® but this load dependence is not significantly dif-
could potentially also become important. As long as typicafferent from when the asperity contact force is proportional to
asperity spacings are still much larger than atomic Spacingghe contact area. This is illustrated in Flg 1, where the both
however, the arguments given in this section should still apthe integral oves in Eq. (9) and the integral
ply to them.

Let us now give sample numerical values for some of the o
quantities which occur in the application of the GW model to f ds¢(s)(s—h)'? (13
this problem. Following Ref. 16, we choose=2.4 n
X104 mm andR.=6.6xX 10 2 mm, and assume that there
is a densityp of 4.0x 10° asperities/mrh Then by perform-
ing the integrals in Egs(9)—(11), we find that forF /A
=3.98<10 “N/mn¥, whereA is the apparent area of the
interface, the total contact area divided by A is 3Q®°,
and the contact area per asperity from the ratio of E@js.
and(10) is 2.44< 10~ ° mn?. Also, p(h)*? which is equal to
the square root of Eq(10) is 1.11 mm’. Since in the
present case;>E’a, Eq. (8a) becomes

are plotted as a function of the dimensionless integral sver
in Eq. (11) for the load. This quantity, and hence the static
friction, are approximately proportional to the 0.8 power of
the load. Furthermore, some simple arguments show that al-
though the Muser-RobbiAgicture, when the effects of as-
perities considered in the present work are taken into ac-
count, does not allow one to conclude that there will be no
static friction for clean surfaces, it does predict that the static
friction for clean surfaces is much smaller than what is nor-
~ / _ 12 12 A7 mally observed. The argument is as follows: If the interface
U=A+ (B'/a){=At[In(Wa) e, (120 p o een two asperities is either in the strong pinning limit or
whereA!/ is a vector whose magnitude is of the same ordetSing the Muser-Robbifspicture, it contains a submono-
asu;, but it can be in any direction. It is determined by the layer _of _mot_)lle molecules, the force of static friction per
contribution toA, from neighboring asperities. In arriving at aSPerity is given by
Eq. (12 we have replaced, J-l by its root mean square
value. Using the above numerical estimates of the parameters Fs/IN=E,(A.), (14
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1 . . . . As a consequence, when an external stress is applied, all
asperities will be pushed out of their potential minima by
almost the same amount, resulting in a net force of static

08 | B . friction. The mechanism of Ref. 2 can still be applied to the

. area of contact between two contacting asperities, however.

. It can result in very smallalthough still nonzerpvalues for

06 - .o q the static friction between two macroscopic solids.
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:2:’. APPENDIX: EQUILIBRIUM CONDITION
0 , , , , FOR PINNING CENTERS AT AN INTERFACE
0 0.2 0.4 0.6 0.8 1

The interaction forces between two solids in contact act at
FIG. 1. The integral oves in Eq. (9) (the lower curvgand the  various points along the interface for atomically flat surfaces
integral oversin Eq. (13) (the upper curveare plotted as a function are expected to act at the points of contact of the atoms of
of the integral oves in Eq. (11), which is proportional to the load. poth solids at the interface. Since it has been established,
All quantities are dimensionless. however, that weakly interacting perfect incommensurate
surfaces exhibit no static frictiol> we expect that any static
where one expects for the shear rupture strength at the aspgiiction that occurs is due to defects. Therefore, let us con-
ity contact regiork, sider the interaction of point defects, randomly distributed
3 over the interface. We must consider both the potential of
E~cVo/b%, (15 jnteraction of a defect of one surface with an atom on the
wherec is the concentration of defects at the interfaggjs ~ Second surface and the elastic energy cost that one must pay
the strength of the defect potential, amis of the order of a  When the solid distorts in order to minimize the interfacial
lattice constant. Using the sample parameters given earlier iand elastic potential energies fjfrepresents the force acting

this section, we obtain as an estimate of the static frictiorPn an atom at sit¢in the solid due to its interaction with a
coefficient second solid with which it is in contact, the displacement of

the atom at théth lattice siteu, is given by

ws=Fs/F ~0.1, (16)

. . u=G;-f;, (A1)
According to the Muser-Robbins argument, for clean sur-
faces, Eq(14) is replaced by where

Fo/N~E(A(b%/cA) ) =Eb(AP)/c?  (17) G=Dj }, (A2)
which when one again substitutes the sample parametewhereDlj is the dynamical matriX’ Then Eq.(A1) can be
given earlier in this section gives written as

mwe~107°. (18

On the basis of this argument, one concludes that the ideal U'ZG'v"f'Jr; Gij-fj- (A3)

static friction coefficient between clean, weakly interacting _ _ o _
surfaces in the light load limit, is much smaller than whatFollowing the discussion in Ref. 14, we find that
one typically observes. A

€kex

maw?(k)

Y

G j=v(2m) %> f d3kek(Ri~R) (A4)
Y

IV. CONCLUSIONS

The main conclusions are as follows. There will always ) ) . )
be static friction for any macroscopic size interfdce., an ~ Wherem is the mass of an atom in the solief is the unit
interface with lateral dimensions much larger than typicalvector which gives the polarization of theh phonon mode
asperity spacing The physical reason for this is that the of wave vectok, R; is the location of th¢th atom, and is
potential acting between two asperities in contact varies off1€ unit cell volume. In order to simplify the problem, let us
length scales of the order of typical atomic spacings. Sinceeplace the tensog)e}, by the unit tensor, which should
this distance is much smaller than typical asperity spacinggive results of the correct order of magnitude. Then (&4,
all asperties can sink to their potential minima with negli- becomes when the integral ovieis done in the Debye ap-
gible cost in elastic potential energy of the contacting solidsproximation
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9 ko sin(kR) replacep(r/) in the integral over| by its average value,
Gii~ mek3 Jo dk— —, (AS) genoted byf, /(wa?). Then we need to estimate the integral
where R=|R,—Rj|, ¢ is the mean sound velocity and we
have used the fact that the Debye wave vegtpis related f d2r'|r+r'|71, (A15)
tov by
v(27r)*3477k3,5/3= 1. (AB) wherer denotes a point on thigh asperity and the integral

runs over the contact area of this asperity. Taking the contact
In Ref. 17, it is shown that the elastic constants are given byrea to be a circle of radiua, this integral can easily be
shown to be equal to
—(1/20) >, R-D(R)R. (A7)
R

!

4rr

: (A16)

* It —1
The magnitude of a typical value of an elastic constarg 4fo drir’(r+r7) 7K

given by

r+r’

whereK(k) is the complete elliptic function. It has a loga-
E=(1/2)(2m) 3b2>, fd3kmw§(k)_ (A8)  rithmic singularity atr’=r, which is integrable, and is of
4 order 1 away from the singularity. Consequently, the integral

When Eq.(A8) is evaluated in the Debye approximation, we is of ordera and we obtain a contribution of ordeE (a) ~ f,

obtain for the last term in Eq(A14). Hence Eq(A14) becomes
E=(3/10m?)mcZk3b2. (A9)
_ _ _ w=(E'a) i+ (E'ln—r;)7 Y.  (AL7)
For kpR>1, we find using EgqstA5) and (A9), taking kpb j#1
~qr

If for simplicity, we replacd; by a;(A;—u;), as was done in
G =(E'R)7%, (A10)  Sec. Il, and we obtain the equilibrium condition for the de-
' . fects used in that section. Sincg was estimated in that
whereE’=(40/9)E. ForkpR<1, section to be only 0.8, the use of the harmonic approxi-

G~(E'b)" 1. (A11) mation was not really justified in Sec. Il. It was only used
there for simplicity to illustrate the fact the system is in the
For simplicity, we assume th#t has the form weak pinning limit. In contrast, in the application of Eq.
(Al14) to the multiasperity problem in Sec. lll, we shall see in
fj=aj(Aj—u)). (Al2)  the next paragraph that this approximation is justified.
Then, from Egs(Al), (A3), (A10), (Al1), and (A12), we In zeroth order in the interasperity interaction, we have
obtain Eq.(7).
The equilibrium condition expressed in E30) can also u@~(E'a)",=(E'a) H[(A-u?)/b], (A18)

be applied to an interface for which the contact takes place

only at a dilute concentration of randomly placed contactingyhereb represents the length scale over whickaries with

asperities, giving for the displacement at a point on Itie u(®, which was argued in Sec. Il to be of the order of an

asperity atomic spacing. Making the substitutio, - u(”) =bv, Eq.

(A18) becomes

u=> f d?r{(E'[r—r;=r{[)"'p(r{), (A13)
: E'a(A,—bv)=f(v). (A19)

wherer; is the location of a central point in the contact area

of the jth asperity,rj’ gives the location of an arbitrary point Sincef oscillates on a length scale it will almost certainly

on this asperity relative to,, andp(r/) is the shear stress at have a zero in the vicinity of/=A/b. Then sinceE’ab

the pointr] . We have replaced the summation over atomic<<|df/dv,|,[3f/dv|, there will be solutions to EA18) with

positions in Eq(A1) by the integral over/ over the contact [f| much less than its maximum value, because if we plot the

area of thejth asperity. In the dilute asperity limit, in which 'eft hand side of Eq(A19) versusu for v alongA, the slope
Ir,— rj|>rj’ , Eq. (A13) is to a good approximation of the straight line on the left hand side is much less than the

slope of thef versusv curve on the right hand side. Hence,
the point of intersection of these two curves is at a point
=2, (E’|rl_rj|)7lfj+f d?r{ (E"[r+r{])"*p(r/), which is much below the maximum value bfThus, we are
17! (A14) justified in expanding in a Taylor series inv around the
nearest zero of to v=A/b. If the potential thaf is derived
wheref,:fdzrj’p(rj’), where the range of integration is over from is chosen for simplicity to be a spherically symmetric
the contact area of thgh asperity. For simplicity, we may function ofv, we may writef(v) ~ av, wherea is a constant.
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