Fermions and Bosons

TODAY:

- Pauli exclusion principle
- Fermions and Bosons
- Lasers

Spin and statistics

- We have seen how things go for one single electron moving in a potential well, or in a hydrogen atom.
- But for other atoms, and for solids, we have to deal with *many electrons*, not just one.
- Two key ideas about states with several electrons:
 - 1. Electrons are *indistinguishable*.
 - 2. Electrons are *fermions*.

Review: Electron spin • Electrons have spin as an intrinsic quality. There are no non-spinning electrons. • This gives an angular momentum vector S• There are only two possible quantum states for the electron spin: "up" and "down". $m_s = -1/2$

Statistics

Electrons are <u>fermions</u>, which means they obey Fermi-Dirac statistics, which in turn leads to the <u>Pauli Exclusion Principle</u>: no two electrons can occupy the same quantum state.

All half-integer-spin particles (protons, neutrons, ...) are fermions.

All integer-spin particles, such as photons, are <u>bosons</u>, which means they obey Bose-Einstein statistics, and <u>not</u> the Pauli exclusion principle. In fact, photons <u>prefer</u> to have many in the same state.

Pauli Exclusion Principle

- No two electrons in the same state.
- That is, one electron for each set of quantum numbers: (n, l, m₁, m₂).
- This gives the *periodic table!*
- Applies to spin-1/2 particles (fermions) such as electrons, protons, neutrons.
- Does not apply to photons.

Example: Problem 40-21

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system. (Assume the electrons do not interact with each other; do not neglect spin!) w(x)

First recall the <u>single-particle</u> <u>energies</u>, found by analogy with the modes of a vibrating string. $\lambda = \frac{2L}{n} \qquad p = \frac{h}{\lambda} = \frac{nh}{2L}$ $E_n = \frac{p^2}{2m} = \frac{n^2h^2}{8mL^2} = n^2E_0$

Problem 40-21 (continued)

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system. (Assume the electrons do not interact with each other; do not neglect spin!)

One electron:
$$E_n = n^2 E_0$$
 $E_0 = \frac{h^2}{8mL^2}$ $n = 1, 2, 3, \cdots$

If all 7 e's were in the lowest (n=1) single-particle state, then the lowest possible energy for the <u>system</u> would be just $7E_{0}$.

But Pauli forbids that. Only <u>two electrons</u> can have energy E_0 , one with spin up, and one with spin down.

Problem 40-21 (continued)

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system.

One electron:
$$E_n = n^2 E_0$$
 $E_0 = \frac{h^2}{8mL^2}$ $n = 1, 2, 3, \cdots$

Make a list of occupied states and energies:

n=1	2	$2E_1 = 2*1E_0 = 2E_0$
n=2	2	$2E_2 = 2*4E_0 = 8E_0$
n=3	2	$2E_3 = 2*9E_0 = 18E_0$
n=4	1	$E_4 = 1*16E_0 = 16E_0$
-		

Total ground state energy: 44E₀

Problem 40-21 (continued)

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system.

 $E_n = n^2 E_0$

To get an excited state move one electron upward:

n=1	2	$2E_1 = 2*1E_0 = 2E_0$	
n=2	2	$2E_2 = 2*4E_0 = 8E_0$	
n=3	1	$1E_3 = 1*9E_0 = 9E_0$	
n=4	2	$2E_4 = 2*16E_0 = 32E_0$	

Energy of state (2,2,1,2): 51E₀

Problem 40-21 (continued)

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system.

$$E_n = n^2 E_0$$

Or another possibility is:

n=1	2	$2E_1 = 2*1E_0 = 2E_0$	
n=2	1	$1E_2 = 1*4E_0 = 4E_0$	
n=3	2	$2E_3 = 2*9E_0 = 18E_0$	
n=4	2	$2E_4 = 2*16E_0 = 32E_0$	

Energy of state (2,1,2,2): 56E₀

Problem 40-21 (continued)

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system.

$$E_n = n^2 E_0$$

Or another possibility is:

n=1	1	$1E_1 = 1*1E_0 = 1E_0$
n=2	2	$2E_2 = 2*4E_0 = 8E_0$
n=3	2	$2E_3 = 2*9E_0 = 18E_0$
n=4	2	$2E_4 = 2*16E_0 = 32E_0$

Energy of state (1,2,2,2): 59E₀

Problem 40-21 (continued)

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system. $E_n = n^2 E_0$

Or another possibility is:

n=1	2	$2E_1 = 2*1E_0 = 2E_0$
n=2	2	$2E_2 = 2*4E_0 = 8E_0$
n=3	2	$2E_3 = 2*9E_0 = 18E_0$
n=5	1	$1E_5 = 1 \times 25E_0 = 25E_0$

Energy of state (2,2,2,0,1): 53E₀

Problem 40-21 (continued)

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system.

 $E_n = n^2 E_0$

Or another possibility is:

n=1	2	$2E_1 = 2*1E_0 = 2E_0$
n=2	2	$2E_2 = 2*4E_0 = 8E_0$
n=3	1	$1E_3 = 1*9E_0 = 9E_0$
n=4	1	$1E_4 = 1 \times 16E_0 = 16E_0$
n=5	1	$1E_5 = 1 \times 25E_0 = 25E_0$

Energy of state (2,2,1,1,1): 60E₀

Problem 40-21 (continued)

Seven electrons are trapped in a one-dimensional infinite potential well of width L. Find the lowest four energy levels of this system. $E_n = n^2 E_0$

I think anything else will give a larger energy. (?) To summarize we have found six energy levels for this seven-electron system.

There are an infinite number of energies, but these may be the six lowest. (2.2.2.1). 44E

SL.	(2,2,2,1):	44E ₀
	(2,2,1,2):	51E ₀
	(2,1,2,2):	56E ₀
	(1,2,2,2):	59E ₀
	(2,2,2,0,1):	53E ₀
	(2,2,1,1,1):	60E ₀

Example: Problem 40-28

Suppose two electrons in an atom have quantum numbers n=2 and l=1 (2p orbital). Keep in mind that the electrons have spin and are <u>indistinguishable</u>.

(Note this could be the two electrons in the 2p subshell of carbon, ground configuration 1s²2s²2p².)

- (a) How many states are possible for those two e's?
- (b) If the Pauli principle did not apply, how many states would be possible?

Example continued

Counting the states for two electrons in the 2p subshell.

First: we see there are <u>6 single-particle states</u>: l=1 allows 3 values of m_i : (+1, 0, -1) and there can be 2 values of m_s : (+1/2, -1/2). Let us denote the 6 states using just the m_{I_1} , m_s values as:

(++), (+-), (0+), (0-), (-+), (--)

Next: Pretend electrons are <u>distinguishable</u>: Suppose we had one <u>blue electron</u> and one <u>red electron</u>. Think of these 6 states as 6 boxes and the 2 electrons as marbles. For each box in which we can put the blue marble, we can choose any one of 6 boxes to put the red marble in. So the total number of different states (permutations) is $6 \times 6 = 36$.

Recap: Identical particles

- All electrons are identical, all photons are identical, all protons are identical, etc.
- The wavefunction for a two-particle state could be written ψ(A,B), meaning particle #1 is at A and #2 is at B. But it could also be written ψ(B,A). The two states are physically the same.
- Therefore, $|\psi(\mathbf{A},\mathbf{B})|^2 = |\psi(\mathbf{B},\mathbf{A})|^2$.
- This gives two possibilities:
- $\psi(A,B) = + \psi(B,A)$ or $\psi(A,B) = + \psi(B,A)$

Spin and Statistics

- The choice of statistics is determined by the spin of the particle.
- ψ(A,B) = + ψ(B,A): Bose-Einstein statistics (bosons)
- ψ(A,B) = ψ(B,A): Fermi-Dirac statistics (fermions)
- It turns out that BE applies if spin is *integer*, and FD applies if spin is *half-integer*.
- Actually we mean

$$s = \frac{1}{2}\hbar$$
 or $s = \frac{3}{2}\hbar$ etc for fermions
 $s = 0$ or $s = n\hbar$ etc for bosons

Why is this?

Textbooks either don't say or say it's too complicated to understand.

But in fact it's relatively simple:

"The Connection between Spin and Statistics", R.T.Deck and J.D.Walker (University of Toledo), Physica Scripta 63, 7-14, 2001.

One way to exchange two particles is to make a *rotation* – the result of which clearly depends on the spins.

Bosons and fermions

Fermi-Dirac statistics: electrons: Atoms

Two particles in the same state is forbidden.

Bose-Einstein statistics: photons: Lasers

Two particles in the same state is encouraged.

Stimulated Emission

Light Amplification by Stimulated Emission of Radiation

Incident photon causes emission of a second photon into <u>exactly the same</u> <u>quantum state</u> as the original photon.

Exactly the opposite of the Pauli Principle.

Happens because photons are *bosons*, not fermions!

Photon of energy E_{γ} is *absorbed*. Absorbing atom makes an *upward* quantum jump. Cannot happen unless energy is conserved:

$$\tilde{E_{\gamma}} = hf = E_1 - E_0$$

Light with $\lambda = hc / E_{x}$

is *removed* from the incident beam, giving a *dark* spectrum line.

