Diffraction II

- **Today**
  - Single-slit diffraction review
  - Multiple slit diffraction review
  - Xray diffraction
  - Diffraction intensities

Review: Double Slit Path Differences

For point P at angle \( \theta \) triangle shows
\[
\Delta L = d \sin \theta
\]
For constructive interference we need
\[
\Delta L = m \lambda
\]
where \( m=0,1,2,... \) is any integer.

So the bright fringes are at angles given by
\[
d \sin \theta = m \lambda
\]

Double-slit interference fringes

So the **bright fringes** are at angles given by
\[
d \sin \theta = m \lambda
\]

And the **dark fringes** are at angles given by
\[
d \sin \theta = (m + \frac{1}{2}) \lambda
\]

Single slit: Pattern on screen

Bright and dark fringes appear behind a single **very thin** slit.
As the slit is made **narrower** the pattern of fringes becomes **wider**.

Single Slit dark fringes

**Destructive** interference:
\[
\left( \frac{a}{2m} \right) \sin \theta = \left( \frac{\lambda}{2} \right)
\]
\[
a \sin \theta = m \lambda
\]

Don’t confuse this with the condition for **constructive** interference for **two** slits!

In fact, note that there is a **dark fringe** when the rays from the top and bottom interfere **constructively**!
Summary of single-slit diffraction

- Given light of wavelength $\lambda$ passing through a slit of width $a$.
- There are dark fringes (diffraction minima) at angles $\theta$ given by $a \sin \theta = m \lambda$ where $m$ is an integer.
- Note this exactly the condition for constructive interference between the rays from the top and bottom of the slit.
- Also note the pattern gets wider as the slit gets narrower.
- The bright fringes are roughly half-way between the dark fringes. (Not exactly but close enough.)

Example: Problem 36-6

The distance between the first and fifth minima of a single-slit diffraction pattern is 0.35 mm with the screen 40 cm away from the slit, with light of wavelength 550 nm.

Find the slit width.

\[ \sin \theta \approx \tan \theta = \frac{y}{D} \]

\[ \sin \theta = \frac{m \lambda}{a} \]

\[ \sin \theta_1 - \sin \theta_5 = \frac{4 \lambda}{a} \]

\[ y_5 - y_1 = D \sin \theta_1 - D \sin \theta_5 = \frac{4 \lambda D}{a} \]

\[ a = \frac{4 \lambda D}{y_5 - y_1} = \frac{4 \times 550 \times 10^{-9} \times 0.4}{3.5 \times 10^{-4}} \]

\[ a = 2.5 \times 10^{-3} \ m = 2.5 \ mm \]

Q.36-1

A slit of width 50 µm is used with monochromatic light to form a diffraction pattern. The distance between dark fringes on a distant screen is 4 mm. If the slit width is increased to 100 µm, what will be the new distance between dark fringes?

Give your answer in mm. (In the range 0-9.)

Pattern size is inversely proportional to slit size: 2 times slit width means (1/2) times the distance between fringes. Answer: 2 mm.

Multiple-Slit Diffraction

Now we can finally put together our interference and diffraction results to see what really happens with two or more slits.

RESULT: We get the two-slit (or multiple-slit) pattern as in chapter 35, but modified by the single-slit intensity as an envelope.

Instead of all peaks being of the same height, they get weaker at larger angles.

Double-Slit Diffraction

\[ a = \text{slit width} \]
\[ d = \text{slit separation} \]
\[ \theta = \text{angle on screen} \]

Bright fringes due to 2-slit interference: $\theta = m \lambda / d$

Zero due to diffraction: $\theta = \lambda / a, 2 \lambda / a, \ldots$
Double-slit diffraction

2 slits of zero width
1 slit of width $a = 5\lambda$
2 slits of width $a = 5\lambda$

Two-slit and one-slit patterns

Actual photograph:
(a) = two slits
(b) = one slit covered

(Figure 36-15 from text page 1003.)

Scaling of diffraction patterns

Notice a common feature of interference and diffraction patterns: The large-scale features of the pattern are determined by the small-scale regularities of the object, and vice-versa.

Holograms and X-ray diffraction patterns are examples.

Example: Sample Problem 36-5

Two slits: $d=19.44$ nm, $a=4.05$ µm, $\lambda=405$ nm.

Solution:

One-slit:
$\theta = m\lambda / a$
$= .10, .20, .30, .04, ...$

Two-slit:
$\theta = m\lambda / d = .02083m$
$=.0208, .0416, .0625, .0833, .1042, .1250, ...$

Example: Sample Problem 36-5

Q.36-2 When red laser light is diffracted by two slits of equal width, there are many closely spaced bands of light inside wider bands. What features of the slits determine the separation $x$ between the closely-spaced bands?

(1) Width of the individual slits.
(2) Distance between the two slits.
(3) Ratio of distance to width.
(4) None of the above: it’s more complicated.
Q.36-2 When red laser light is diffracted by two slits of equal width, there are many closely spaced bands of light inside wider bands. What features of the slits determine the separation \(x\) between the closely-spaced bands?

- (1) Width of the individual slits.
- (2) Distance between the two slits.
- (3) Ratio of distance to width.
- (4) None of the above: it’s more complicated.

X-Rays

- X-rays are just light waves with shorter wavelengths and higher photon energies.
- Since X-ray wavelengths are comparable to atomic sizes, they are perfect for studying atoms and the arrangement of atoms in crystals.

X-Rays and Crystals

A crystal surface acts like a diffraction grating for X rays.

Bragg condition for a bright spot:

\[2d \sin \theta = m\lambda\]

X-ray crystallography

In this way, using X-rays of known wavelength we can measure the distances between atoms in a crystal and determine the crystal structure.

Single-slit Intensity

- We know where to find the dark fringes in the single-slit pattern. But can we calculate the actual intensity at a general point?
  - Yes, using the phasor method.
  - Book gives result on page 998: \[\frac{I_\theta}{I_m} = \left(\frac{\sin \alpha}{\alpha}\right)^2\]

Here \(I_\theta\) is the intensity at angle \(\theta\) on the screen.
\(I_m\) is the intensity at the central maximum.

The angle \(\alpha = \phi / 2\), and \(\phi\) is the phase difference between the rays from top and bottom of slit.

Phasors for Single Slit

Break up the slit into many tiny zones, giving many rays of light, which come together on the screen.

\[\Delta \phi = \text{Phase difference between adjacent rays}\]
\[\phi = \text{Phase difference between top and bottom rays}\]

\[E_m = \text{Amplitude at center} = \text{Sum of all phasors}\]
\[E_\theta = \text{Amplitude at angle } \theta, \text{ get from diagram}\]
First Maximum and Minimum

Remember of course the relation between phase difference and path difference

\[ \phi = \left( \frac{2\pi}{\lambda} \right) (a \sin \theta) \]

\[ \phi = 0 \]

\[ E_\phi = E_m \]

\[ E_\theta = 0 \]

\[ \phi = m(2\pi) \]

\[ a \sin \theta = m\lambda \]

Intensity for Single Slit

\[ E_m = R\phi \]

\[ E_\phi = 2R \sin(\phi/2) \]

\[ \frac{E_\phi}{E_m} = \frac{2 \sin(\phi/2)}{\phi} \]

\[ \frac{I_\phi}{I_m} = \frac{4 \sin^2(\phi/2)}{\phi^2} \]

Which gives the textbook result:

\[ \frac{I_\phi}{I_m} = \left( \frac{\sin \alpha}{\alpha} \right)^2 \]