Induction and Oscillations

Ch. 30: Faraday’s Law
Ch. 31: AC Circuits

Induced EMF: Faraday’s Law

“Time-dependent B creates induced E”

In particular: A changing magnetic flux creates an emf in a circuit:

Electromagnetic Induction

Current in secondary circuit can be produced by a changing current in primary circuit.

Ammeter or voltmeter.

Application: Transformer

Demonstrations

- EMF induced in a coil by moving a bar magnet
- EMF induced in a secondary coil by changing current in primary coil

Sorry, we can't do it in this packed room… but here is the essence of it

EMF induced in a coil by moving a bar magnet

EMF depends on how strong magnet and how fast we move in/out

EMF induced in a secondary coil by changing current in primary coil
Magnetic Flux

We define magnetic flux Φ exactly as we defined the flux of the electric field. The idea is the number of lines of \mathbf{B} that pass through an area.

$$\Phi = \int \mathbf{B} \cdot d\mathbf{A}$$

Simple case #1: uniform \mathbf{B}, \perp surface: $\Phi = BA$

Simple case #2: surface is closed: $\Phi = 0$

Faraday’s Law

$$\mathcal{E} = -\frac{d\Phi}{dt}$$

The emf induced in any loop or circuit is equal to the negative rate of change of the magnetic flux through that loop.

Example 1

A circle of radius 20 cm in the xy plane is formed by a wire and a 3-ohm resistor. A uniform magnetic field is in the z direction; its magnitude decreases steadily from .08 tesla to 0 in a time of 4 seconds.

What emf is generated?

$$A = \pi r^2 = 0.13 \ m^2 \quad \frac{dB}{dt} = -\frac{.08T}{4 \ s} = -.02 \ T/s$$

$$\mathcal{E} = -\frac{d\Phi}{dt} = -A\frac{dB}{dt} = -(0.13)(-0.02) = 2.6 \times 10^{-3} \ V$$

Example 2

I push a rod along metal rails through a uniform magnetic field.

(a) What emf is generated?

(b) What current will flow?

(c) What power must I supply?
Example 2a
L = 20 cm
V = 3.0 m/s
B = .05 T
(a) What emf is generated?
\[\frac{dA}{dt} = L \frac{dx}{dt} = L v = 0.6 \text{ m}^2 / \text{s} \]
\[\mathcal{E} = -\frac{d\Phi}{dt} = -B \frac{dA}{dt} = -0.05 \times 0.6 = -30 \text{ mV} \]

Example 2b
Resistance of bar: R = 15 Ω
(b) What current will flow?
\[i = \frac{\mathcal{E}}{R} = \frac{-30 \times 10^{-3} V}{15 \Omega} = -2 \text{ mA} \]
Which direction does current flow?
Forget the minus sign. Use Lenz’s Law!
Flux is increasing outward. Therefore current will resist that change by flowing clockwise.

Example 2c
(c) What power must I supply?
Magnetic force: \(\vec{F} = i \vec{L} \times \vec{B} \)
\[F = 0.002 \times 0.2 \times 0.05 = 2 \times 10^{-5} \text{ N} \]
Power: \(P = Fv = (2 \times 10^{-5} \text{ N})(3 \text{ m/s}) = 6 \times 10^{-5} \text{ W} \)
Check Joule heating: \(P = i^2 R = 6 \times 10^{-5} \text{ W} \)

Faraday’s Law: General Form
\[\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{A} \]

Inductance
- For any coil of wire, there is a flux \(\Phi \) through the coil, which is proportional to the current.
- If that changes, Faraday’s Law requires an emf induced in the coil, proportional to the rate of change of the flux.
- Clearly \(\Phi \propto i \) and so \(\mathcal{E} = -\frac{d\Phi}{dt} = -\frac{di}{dt} \)
- Define the proportionality constant to be the inductance \(L \):
 \[\mathcal{E} = -L \frac{di}{dt} \]
- SI unit of inductance is the henry (H).

Inductors
If current is increasing, the induced emf acts against the increase, giving a voltage drop.
If current is decreasing, the induced emf acts against the decrease, giving a voltage rise.
Energy in an Inductor

The energy stored in an inductor equals the work required to set up the current.

\[dW = Vdq = V \frac{dq}{dt} \frac{dt}{(Li)} = Lidi \]

\[W = \int dW = L \int_0^i idt = \frac{1}{2} LI^2 \]

So energy stored in an inductor is \(U = \frac{1}{2} Li^2 \)

Magnetic Field Energy

The energy stored in an inductor is contained in the magnetic field. The general formula for the energy density in any magnetic field is

\[u = \frac{B^2}{2\mu_0} \]

Inductors and Resistors

 Voltage changes going clockwise around this loop:

\[+ \varepsilon - iR - L \frac{di}{dt} = 0 \]

Inductor gives voltage drop if current is increasing.

RL Circuits

\[+ \varepsilon - iR - L \frac{di}{dt} = 0 \]

\[L \frac{di}{dt} + Ri = \varepsilon \]

Same equation as for charging a capacitor!

Try same kind of solution:

\[i = \frac{\varepsilon}{R} \{1 - e^{-t/\tau}\} \]

This works, provided

\[\tau = \frac{L}{R} \]

Example

\(\varepsilon = 30 V \)

\(R = 5000 \Omega \)

\(L = 15 mH \)

(a) What is the time constant?

\[\tau = \frac{L}{R} = \frac{15 \times 10^{-3}}{5 \times 10^{-3}} = 3 \times 10^{-6} = 3 \mu s \]

(b) What is current after 1 second?

\[i = \frac{\varepsilon}{R} \{1 - e^{-t/\tau}\} = \frac{30}{5000} (1 - 0) = 6 mA \]
Example 2: Problem 30-89

(a) What happens immediately after switch is closed?

L prevents sudden change so:

\[i_2 = 0 \quad \therefore \quad i = i_1 = \frac{\varepsilon}{R_1} \]

So:

\[V_{R2} = 0 \quad \therefore \quad V_L = \varepsilon \quad \text{and} \quad \frac{di_2}{dt} = \frac{\varepsilon}{L} \]

Example 2 continued

(b) What happens a long time after switch is closed?

We have reached a steady state so:

\[\frac{di_2}{dt} = 0 \quad \therefore \quad V_L = 0 \quad \text{and} \quad V_{R2} = \varepsilon \]

So:

\[i_1 = \frac{\varepsilon}{R_1}, \quad i_2 = \frac{\varepsilon}{R_2}, \quad i = i_1 + i_2 \]

Induction and Oscillations

Ch. 30: Faraday’s Law
Ch. 31: AC Circuits

• Chapter 30 Homework for Monday:
 – Questions 1, 3, 7
 – Problems 3, 5, 29, 44

• Chapter 31 Homework for Tuesday:
 – Questions 3, 4, 7
 – Problems 5, 19, 39

• WileyPlus chapters 30, 31 for Tuesday.