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Albert Einstein  (1879-1955)

He was the pre-eminent scientist in a 

century dominated by science. The 

touchstones of the era--the Bomb, the 

Big Bang, quantum physics and 

electronics--all bear his imprint.



1905

1. First Jazz Band

2. Major league debut of Ty Cobb

3. Cedar Point hotel: The Breakers

4. Wilbur Wright flight of 24 miles

5. Einstein’s miraculous year.



Einstein’s  great year

1. Light energy is discrete: the photon.

2. Molecular motion: atoms are real.

3. Relativity: 4-dimension space-time.

4. Mass-energy equivalence: E=mc2.

5. Dissertation: size of molecules.

He was 26 years old at the time.

Nobel Prize for (1) in 1921.





“Everything is relative!?”

Wrong:

Some things which were previously thought 

to be absolute, we now know to be relative.  

Some things which were thought to be 

relative, we now know to be absolute.

But this is not the main thing.  The reason 

we must learn relativity is to get the right 

equations for high-speed motion.



Einstein 1905:
Combining these two is possible:

the speed of light in vacuum is 

the same for all observers!

The result is the Special Theory of Relativity.

Galileo 1638, Newton 1687:

The laws of physics 

are the same for all 

inertial observers.

Maxwell 1865:
Electromagnetic equations 

predict light travels at 

speed c in vacuum.



Inertial Reference Frames

• An inertial reference frame is a coordinate 

system (x,y,z,t) which is at rest or moving 

with constant speed in a straight line.

• An inertial observerO is a physicist using 

an inertial reference frame.

• Suppose O and O’ are inertial observers, 

with O’moving at velocity v relative toO.

• IfO and O’ observe the same events, 

which measurements to they agree upon?







Notice if u,v << c we get familiar u' = u + v

Notice if u=c we get u' = (c+v)/(1+v/c) = c     (!)



Where did Einstein get this?

• He saw that there seemed to be a contradiction 

between his two favorite physicists: Galileo and 

Maxwell.

• Galileo: the laws of physics are the same for 

all inertial observers.

• Maxwell: the speed of light is determined by 

electrodynamics to be ./100.3
8

smc ××××====

He worried about this for 10 years:  

from age 16 to 26 (1895-1905).



How did he solve the problem?

He found that the old “self-evident” laws for transformations 

between inertial frames must be replaced by new ones.

Galileo:
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vtxx
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−−−−====
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Einstein: use the Lorentz 

transformation: 
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γγγγ
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Everything Follows

• Lorentz transformation equations

• Doppler shift for light

• Addition of velocities

• Length contraction

• Time dilation (twin paradox)

• Equivalence of mass and energy (E=mc2)

• Correct equations for kinetic energy

• Nothing can move faster than c



Time 

Dilation

Comoving Frame:

cDt /20 =∆

Lab Frame:

cLt /2=∆

Pythagoras:

( )222 2/tvLD ∆−=

“Moving 

clocks  run 

slow!”

Moving train: flashbulb, 

mirror, detector, clock.

On ground: two clocks.



Time 

Dilation
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Time Dilation

00 ttt ∆∆∆∆≥≥≥≥∆∆∆∆====∆∆∆∆ γγγγ

Time measured in lab (∆t) is greater than proper 

time ∆t0 (measured by co-moving observer).

“Moving clocks run slow”.
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The 

Gamma 

Factor
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Uses of gamma

• Time dilation:

• Length contraction:

• Energy:

0tt ∆∆∆∆====∆∆∆∆ γγγγ

γγγγ/0xx ∆∆∆∆====∆∆∆∆

2
mcE γγγγ====



Kinetic Energy of a Fast Particle

2mcE γ=
General relation 

for total energy:

2mcE =Rest energy, v=0:

22 )1( mcmcEK −=−= γKinetic energy:

mvp γ=Momentum:

2222 )()( pcmcE +=
Relation between 

momentum and energy:



Recap

• Relativistic equations involving the 

“gamma factor” such as E = γγγγmc2 are 

essential for any description of high-speed 

motion.

• All these equations follow directly from:

– The principle of relativity.

– The invariance of the speed of light.

• But the most powerful and elegant ideas 

involve the four-dimensional spacetime 

continuum.



The spacetime continuum

• Instead of thinking of space and time separately, 
think of a four-dimensional spacetime.  The 
“points” in this spacetime are really events.

• Then the “distance” between events is called the 
spacetime interval.

• Now relativity follows from the fundamental 
assumption that the spacetime interval is 
invariant: the same for all inertial observers.

Another way of expressing laws of special relativity which is 

often simpler than using the Lorentz transformation equations.



Doppler shift for light
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cv
ff
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Frequency shift 

for motion along 

the line of sight:

c

v
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∆∆∆∆
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λλλλApproximation 

for v << c:
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For motion 

transverse to 

line of sight:



Relativity

• Relativistic Mechanics
– Review: Basics of special relativity

– Review: The gamma factor

– Kinetic energy and rest energy

– Examples



Summary of Special Relativity basics

• The laws of physics are the same for all inertial 

observers (inertial reference frames).

• The speed of light in vacuum is a universal 

constant, independent of the motion of source 

and observer.

• The space and time intervals between two events 

are different for different observers.

• The equations of Newtonian mechanics (Phys. I) 

are only “non-relativistic” approximations, valid 

for speeds small compared to speed of light.



Lorentz transformation

Einstein found that the old “self-evident” laws for transformations 

between inertial frames must be replaced by new ones.

Galileo:

tt

vtxx

====

−−−−====

'

'

Einstein: use the Lorentz 

transformation: 
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Adding 
velocities

)/'1/()'(
2

cvuvuu ++++++++====

vuu ++++==== '

This gives desired result that if u’=c, then 

u=c also, independent of the value of v!

If S’ moves with speed v
relative to S, and a particle 
moves with speed u’
relative to S’, then what is 
its speed u relative to S?

“Obvious” answer:

Correct answer:



Example

An enemy spaceship approaches the earth at a speed 

of 0.5c.  It fires a torpedo at us, which has a speed of 

0.5c relative to the spaceship.  What is the torpedo’s 

speed relative to the earth when it hits us?
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Q.37-1

An enemy spaceship approaches the earth at a speed of 

0.5c.  It fires an X-ray pulse at us, which has a speed of 

1.0c relative to the spaceship.  What is the speed of the 

X-ray pulse relative to the earth when it hits us?

(1) 0 (2) 0.5c   (3) 0.8c  (4) 1.0c (5) 1.5c



A spaceship approaches the earth at a speed of 0.5c.  

It fires an X-ray pulse at us, which has a speed of 1.0c 

relative to the spaceship.  What is the speed of the X-

ray pulse relative to the earth when it hits us?

(1) 0      

(2) 0.5c      

(3) 0.8c      

(4) 1.0c      

(5) 1.5c



Q.37-1

An enemy spaceship approaches the earth at a speed of 

0.5c.  It fires an X-ray pulse at us, which has a speed of 

1.0c relative to the spaceship.  What is the speed of the 

X-ray pulse relative to the earth when it hits us?

(1) 0 (2) 0.5c   (3) 0.8c  (4) 1.0c (5) 1.5c

Electromagnetic waves in vacuum always travel at 

speed c independent of motion of source or observer!



Q.37-1  (Alternative solution)
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Kinetic Energy of a Fast Particle

2
mcE γγγγ====

General relation 

for total energy:

2
mcE ====Rest energy, v=0:

22
)1( mcmcEK −−−−====−−−−==== γγγγKinetic energy:

mvp γγγγ====Momentum:

2222
)()( pcmcE ++++====

Relation between 

momentum and energy:



Q.37-2
An electron is moving with a 

velocity v = 0.94c, which means 

that it has γ = 3.

What is its kinetic energy?

(Recall that the electron rest 

energy mc2 is about 0.5 MeV.)

(1) 0.17 MeV     (2) 0.5 MeV   (3) 1.0 MeV   (4) 1.5 MeV



Q.37-2
An electron is moving with a 

velocity v = 0.94c, which means that 

it has γ = 3.

What is its kinetic energy?

(Recall that mc2 is about 0.5 MeV.)

(1) 0.17 MeV     (2) 0.5 MeV   (3) 1.0 MeV   (4) 1.5 MeV

MeVMeVMeVmcEK 0.15.05.12 ====−−−−====−−−−====

Total energy is MeVmcE 5.03
2 ××××======== γγγγ

Kinetic energy is



SLAC:  Stanford Linear Accelerator

Accelerates electrons for 2 miles: GeVmcE 20
2 ======== γγγγ







Example:  SLAC electron beam

• The Stanford Linear Accelerator 

(SLAC) accelerates a beam of 

electrons for two miles.

• The final kinetic energy is 20 GeV.

• What is the electrons’ final velocity?



Step 1: find the γ factor

2
mcE γγγγ====We know so given E,m solve for γ.

kgm
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JeVeV
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−−−−−−−−

−−−−

××××====
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1631

9

2
109.3

100.9101.9

102.3
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−−−−
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E
γγγγ



Step 1 (cont’d)

4
4

2
109.3

51.0

102
××××====

××××
========

mc

E
γγγγ

Actually nobody would do it that way.

Don’t use mass in kg and energy in J.

MeVmcandMeVGeVE 51.010220
24 ====××××========



Solution

so

Now that we have γ we can solve for v.

(((( ))))2/1
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Example:  “Newtonian” SLAC

• SLAC gives an electron an energy of 20 GeV

by providing a constant force acting over a 

distance of about 2 miles, or about 3 km.

• What work is done during one meter of 

flight?

• Using Newtonian kinetic energy formula, 

how long would the acceleration tube need to 

be to bring the electrons to the speed of light?



Newtonian SLAC Solution

JGeV
9

102.320
−−−−××××====

JmcW
1428312

104)103(101.95.0
2

1 −−−−−−−− ××××≅≅≅≅××××××××××××××××========

Acceleration for 3 km:

J
12

9

101
3000

102.3 −−−−
−−−−

××××≅≅≅≅
××××

Acceleration for 1 m:

Work = Force × Distance

cmm 4104
101

104 2

12

14

====××××≅≅≅≅
××××

×××× −−−−

−−−−

−−−−

Required to reach v=c using 2

2

1
mvKW ========

Distance needed is:



Error in Newtonian Solution

cmm 4104 2 ====×××× −−−−

Newtonian answer for the distance needed is:

Distance needed in real life is:

km3

Newtonian error factor is:

750001075.
104

103

4

3 5

2

3

====××××====
××××

××××
====

−−−− m

m

cm

km



Review:  Kinetic Energy

2
mcE γγγγ====

General relation 

for total energy:

2
mcE ====Rest energy, v=0:

22
)1( mcmcEK −−−−====−−−−==== γγγγKinetic energy:

mvp γγγγ====Momentum:

2222
)()( pcmcE ++++====

Relation between 

momentum and energy:



Exact vs non-relativistic calculations

Last time we saw that for the Stanford LINAC, 

a nonrelativistic calculation was terribly wrong 

(3 cm vs 2 miles).

That was a case where K >> mc2.  (ER case)

Now let’s look at the case K << mc2.  (NR case)



Example: He beam from THIA

KeVGeVmc 〉〉〉〉〉〉〉〉××××====××××====
92

10414

nsmmsmcv /67.3/1067.30122.
6 ====××××========

K = 300keV     v = ?

So non-relativistic calculation should be OK.
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K
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Compare with exact relativistic answer

error%006.106
1224676

12246761224745 5 ====××××====
−−−− −−−−

Compare with non-relativistic approximation:
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Q.37-3

An electron (mc2 = 0.5 MeV) moves with a speed 

v = 0.94c so that γ = 3.

What is its kinetic energy?

1. 0.1 MeV

2. 0.5 MeV

3. 1.0 MeV

4. 2.0 MeV

5. 5.0 MeV



Q.37-3
mc2 = 0.5 MeV,  γ = 3: K = ?

1. 0.1 MeV

2. 0.5 MeV

3. 1.0 MeV

4. 2.0 MeV

5. 5.0 MeV

MeVMeV

mcmcEK

0.15.0)13(

)1(
22

====−−−−====

−−−−====−−−−==== γγγγ



Time Dilation

00 ttt ∆∆∆∆≥≥≥≥∆∆∆∆====∆∆∆∆ γγγγ
Time measured in lab (∆t) is greater than proper 

time ∆t0 measured by co-moving observer.

“Moving clocks run slow”.

(((( ))))
1

/1

1

2
≥≥≥≥

−−−−
====

cv
γγγγ

A lab observer compares two stationary clocks against 

a clock moving with speed v, as it passes first one then 

the other.  Lab clocks give ∆t, moving clock ∆t0.



Example: Problem 37-21

A clock moves along the x axis at speed v = 0.6c 

and reads zero as it passes the origin.  What time 

does the clock read as it passes x = 180 m?

Lab time: s
sm

m

v

x
t µµµµ1

/1036.

180
8

====
××××××××

========∆∆∆∆

Gamma factor: 25.1
8.

1

6.1

1

2
========

−−−−
====γγγγ

Proper time:
s

st
t µµµµ

µµµµ

γγγγ
8.0

25.1

1
0 ========

∆∆∆∆
====∆∆∆∆



Q.37-4

A clock moves relative to a laboratory, at speed v 

such that γ=5.  During the time taken for the 

moving clock to advance 10 ns, how much time 

elapses according to the lab clocks?

(1) 0.5 ns   (2) 2 ns     (3) 5 ns     (4) 10 ns     (5) 50 ns



Q.37-4

A clock moves relative to a laboratory, at speed v 

such that γ=5.  During the time taken for the 

moving clock to advance 10 ns, how much time 

elapses according to the lab clocks?

nsnstt 50105 ====××××====∆∆∆∆====∆∆∆∆ γγγγ

Solution:

(1) 0.5 ns   (2) 2 ns     (3) 5 ns     (4) 10 ns     (5) 50 ns



Lorentz transformation

Einstein found that the old “self-evident” laws for 
transformations between inertial frames must be 

replaced by new ones.

Galileo:

tt

vtxx

====

−−−−====

'

'

Einstein: use the 

Lorentz transformation: 

)/('

)('

2
cvxtt

vtxx

−−−−====

−−−−====

γγγγ

γγγγ

(((( ))))2/1

1

cv−−−−
====γγγγwhere



Example: Problem 37-19

Two flashbulbs triggered simultaneously.

xBA

30 km

x'

.25 c

Also viewed from moving frame.



Use Lorentz transformation

For each event, knowing x,t, calculate x',t'.

)/('

)('

2
cvxtt

vtxx

−−−−====

−−−−====

γγγγ

γγγγ



Use Lorentz transformation

xBA

30 km

x'

.25 c

Coordinates in lab frame:

kmLxxtt BABA 30,0,0 ====================

?',0',0' ============ BAA txt
Coordinates in moving frame:



Example 

continued

Use Lorentz transformation 

equation for time of event B in 

moving frame.

(((( ))))

s
sm

m

cvLcvxtt BBB

µµµµ

γγγγγγγγ

8.25
/103

10325.00328.1

//'

8

4

22

−−−−====
××××

××××××××××××
−−−−====

−−−−====−−−−====

But t'A=0.  So B happens before A as seen in moving frame!

(((( )))) (((( ))))
0328.1

25.1
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/1

1

22
====

−−−−
====
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γγγγ



Example summarized

Times in lab frame:

0======== BA tt

stt BA µµµµ8.25'0' −−−−========

Times in moving frame:

Events are not simultaneous in moving frame.

B is first, then A is 25.8 microseconds later.



The spacetime interval

• Our text doesn’t stress this point, but there 

is another way of expressing laws of special 

relativity which is often simpler than using 

the Lorentz transformation equations or 

going back to the “two postulates”.

• This is the invariant spacetime interval.



The spacetime continuum

• Instead of thinking of space and time 
separately, think of a four-dimensional 
spacetime.  The “points” in this spacetime are 
really events.

• Then the “distance” between events is called 
the spacetime interval.

• Now relativity follows from the fundamental 
assumption that the spacetime interval is 
invariant: the same for all inertial observers.

Another way of expressing laws of special relativity which is 

often simpler than using the Lorentz transformation equations.



The spacetime interval

Given two events (x1,t1) and (x2,t2).

As seen by inertial observer O they 

are separated by intervals 12

12

ttt

xxx

−−−−====∆∆∆∆

−−−−====∆∆∆∆

As seen by another observer O' these 

intervals are different (relative).

But the space-time interval 

is the same (invariant):

tt

xx

∆∆∆∆≠≠≠≠∆∆∆∆

∆∆∆∆≠≠≠≠∆∆∆∆

'

'

ss ∆∆∆∆====∆∆∆∆ '

2222
xtcs ∆∆∆∆−−−−∆∆∆∆====∆∆∆∆



The spacetime diagram

ct

x

∆x

c∆t

Two events

An alternative to the Lorentz transformation 

equations is the invariant spacetime interval:

(((( )))) (((( ))))
ss

xtcs

∆∆∆∆====∆∆∆∆

∆∆∆∆−−−−∆∆∆∆====∆∆∆∆

'

222

Unlike ordinary (Euclidean) 

geometry, this interval can 

be either positive (timelike) 

or negative (spacelike).



Example
Derive time dilation using ∆s' = ∆s.

Two events occur at 

the same place:
tcsx ∆∆∆∆====∆∆∆∆====∆∆∆∆ ,0

(((( )))) (((( )))) (((( ))))2222
''','' xtcstvx ∆∆∆∆−−−−∆∆∆∆====∆∆∆∆∆∆∆∆====∆∆∆∆

Same events seen by observer moving with speed v:

ss ∆∆∆∆====∆∆∆∆ ' gives

(((( )))) (((( )))) (((( ))))

(((( ))))2

22222
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cvtcs

tvtcs

−−−−∆∆∆∆====∆∆∆∆

∆∆∆∆−−−−∆∆∆∆====∆∆∆∆

So now use invariance of spacetime interval:

(((( )))) tcvtt ∆∆∆∆====−−−−∆∆∆∆====∆∆∆∆ γγγγ
2

/1/'



All Observers are Equivalent

• In a moving reference frame, lengths contract, time dilates.  

“Moving rods are short and moving clocks are slow!”

• How is this possible if all inertial observers are equivalent?

• If B moves with speed v relative to A, then B’s clocks are slow as 

measured by A.

• But according to B, it’s A that’s moving, so A’s clocks are slow as 

measured by B.

• Is this possible?

• Yes, because they also disagree about how the clocks are 

originally synchronized.

• A careful analysis shows that the effect is perfectly symmetrical: 

“Each observer thinks the other is using slow clocks!” †



Simple Problem to Show Symmetry

C1′
L C2′

v
y′

x′

C1
L C2

y

x

Observers O and O’ with relative speed v.



Use invariant 

spacetime 

interval

• Four events: (a) C1′ passes C1, (b) C1′ passes C2, 

(c) C2′ passes C1, (d) C2′ passes C2

• For each pair of events figure out the 

invariant interval

• Now apply the invariance 

2222
xtcs ∆∆∆∆−−−−∆∆∆∆====∆∆∆∆

ss ∆∆∆∆====∆∆∆∆ '

Result: Find each observer thinks the other’s clocks 

are slow and improperly synchronized!

C1′′′′ L C2′′′′

v
y′′′′

x′′′′

C1 L C2

y

x

†



Relativity III

• Today:
– Time dilation examples

– The Lorentz Transformation

– Four-dimensional spacetime

– The invariant interval 

– Examples

• Exam Tomorrow Chapters 33-37



Example: Problem 37-65

Can a long limo fit in a short garage temporarily?



37-65 (cont’d)

(a) Length of car according to Garageman

(b) Coordinates of event 2 according to Garageman

(c) Car spends this time inside according to G.

(d) Length of garage according to Carman



37-65 (cont’d)

(e) Time between events according to Carman

stsotBut CC

7

21 1001.10
−−−−××××−−−−========

So to Carman, event 2 occurs first, and the 

car is never entirely inside the garage.


