Relativity



PERSON OF THE CLENIURY




1)

PERSON OF THE CENTURY

Albert Einstein (1879-1955)

He was the pre-eminent scientist in a
century dominated by science. The
touchstones of the era--the Bomb, the
Big Bang, quantum physics and
electronics--all bear his imprint.
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1905

First Jazz Band

Major league debut of Ty Cobb
Cedar Point hotel: The Breakers
Wilbur Wright flight of 24 miles

Einstein’s miraculous year.
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Einstein’s great year G
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1t energy 1s discrete: the photon.

ecular motion: atoms are real.

Relativity: 4-dimension space-time.

Mass-energy equivalence: E=mc?.

Dissertation: size of molecules.

He was 26 years old at the time.

Nobel Prize for (1) in 1921.



RELATIVITY
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“Everything is relative!?”
Wrong:

Some things which were previously thought
to be absolute, we now know to be relative.
Some things which were thought to be
relative, we now know to be absolute.

But this 1s not the main thing. The reason

we must learn relativity 1s to get the right
equations for high-speed motion.




The laws of physics

Galileo 1638, Newton 1687: | are the same for all
inertial observers.

Electromagnetic equations
predict light travels at
speed ¢ 1n vacuum.

Maxwell 1865:

Combining these two is possible:

Einstein 1905;

the speed of light in vacuum 1s
the same for all observers!

The result 1s the Special Theory of Relativity.




Inertial Reference Frames

An inertial reference frame is a coordinate
system (X.,y,z,t) which is at rest or moving
with constant speed in a straight line.

An inertial observer Qis a physicist using
an inertial reference frame.

Suppose O and O’are inertial observers,
with O’moving at velocity v relative to O,

If O and O’observe the same events,
which measurements to they agree upon?
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Where did Einstein get this?

e He saw that there seemed to be a contradiction
between his two favorite physicists: Galileo and
Maxwell.

* Galileo: the laws of physics are the same for
all inertial observers.

 Maxwell: the speed of light is determined by
electrodynamics to be c=3.0x10% m/s.

He worried about this for 10 years:
from age 16 to 26 (1895-1905).



How did he solve the problem?

He found that the old “self-evident” laws for transformations
between 1nertial frames must be replaced by new ones.

y y'

Galileo: y'— y _ ¢ > S
> )
t' = t Event
. . -~ V[ fe—— X —
Einstein: use the Lorentz |- x -
transformation: .
x'=y(x—vt)

here|” =
t'=y(t—vx/c?) o \/




Everything Follows

Lorentz transformation equations
Doppler shift for light

Addition of velocities

Length contraction

Time dilation (twin paradox)
Equivalence of mass and energy (E=mc?)
Correct equations for kinetic energy
Nothing can move faster than c



Time

Dllatlon E”E’IIII:M;Euem
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Comoving Frame: G *
Ato — 2D / C ’_ﬁ\h/
Lab Frame:
At=2L/c
Pythagoras:

D’ =1 —(vAt/2)

Moving train: flashbulb,
mirror, detector, clock.

On ground: two clocks.

“Moving
clocks run
slow!”’



Time T
Dilation -l -

D* =12 — (vAt/2) 5

(cAt,12)* = (cAt/2) —(vAt/2)

(At))? = (At)' — (vAt/c)
So:

(At))* = (At) {1 (v/c }
At = At /\/1 v/c) = YAl

At > A,




Time Dilation

At = yAt, 2 At,

Time measured in lab (At) is greater than proper
time At, (measured by co-moving observer).

“Moving clocks run slow”.

1

V= 1 2
\/1—(v/c)2 B
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Speed (10% m/s)
c=3%x10° m/s =300 km/ms



Uses of gamma
» Time dilation: Af =y At,
» Length contraction: Ax =Ax,/y

* Energy: FE =ymc’



Kinetic Energy of a Fast Particle

General relation
for total energy:

E =ymc’
Rest energy, v=0: F =mc*
Kinetic energy: K = E —mc” = (y — 1)m02

Momentum: P =Y my

Relation between > N )
momentum and energy: Lo = (m ¢ ) T (p C)



Recap

« Relativistic equations involving the
“gamma factor” such as E = ymc? are
essential for any description of high-speed
motion.

* All these equations follow directly from:
— The principle of relativity.
The invariance of the speed of light.

* But the most powerful and elegant 1deas
involve the four-dimensional spacetime
continuum.



The spacetime continuum

Another way of expressing laws of special relativity which 1s
often simpler than using the Lorentz transformation equations.

* Instead of thinking of space and time separately,
think of a four-dimensional spacetime. The
“points” 1n this spacetime are really events.

 Then the “distance’ between events 1s called the
spacetime interval.

* Now relativity follows from the fundamental
assumption that the spacetime interval 1s
invariant: the same for all inertial observers.




Doppler shift for light

Frequency shift 1Fv/c
for motion along f = fo
1tv/c

the line of sight:

Approximation AA v

for v << c: 1 ;

For motion

transverse to fzfo\/l—(v/c)2 = f,/y

line of sight:




Relativity

e Relativistic Mechanics

— Review: Basics of special relativity
— Review: The gamma factor

— Kinetic energy and rest energy

— Examples



Summary of Special Relativity basics

The laws of physics are the same for all inertial
observers (inertial reference frames).

The speed of light in vacuum is a universal
constant, independent of the motion of source
and observer.

The space and time intervals between two events
are different for different observers.

The equations of Newtonian mechanics (Phys. I)
are only “non-relativistic” approximations, valid
for speeds small compared to speed of light.



Lorentz transformation

Einstein found that the old “self-evident” laws for transformations
between inertial frames must be replaced by new ones.
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Galileo:  y'— y —
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Einstein: use the Lorent; -
transformation: x x'

x'=y(x—vt)

here|” =
t'=y(t—vx/c?) o \/



in L. J
Add. 2 i o

velocities L. . e

¥ ‘ u'as measured from §'

It $° moves with speed v 1 as measured from §
relative to S, and a particle
moves with speed u’ o 4
relative to S’, then what is
its speed u relative to S?

“Obvious” answer: 7

Correct answer:
u=u'+v)/(1+u'v/c?)

This gives desired result that if u’=c, then
u=c also, independent of the value of v!



Example

An enemy spaceship approaches the earth at a speed
of 0.5¢. It fires a torpedo at us, which has a speed of
0.5¢ relative to the spaceship. What is the torpedo’s
speed relative to the earth when it hits us?

| |
» d 2
v, v,

L u'+v  Sc+.35c¢
1+u'v/e? 1+.5x.5
= =£c=0.80

1.25 S



Q.37-1

An enemy spaceship approaches the earth at a speed of
0.5¢. It fires an X-ray pulse at us, which has a speed of
1.0c relative to the spaceship. What is the speed of the
X-ray pulse relative to the earth when it hits us?

B

10 (2)0.5c (3)0.8¢c (#)1.0c (5 1.5¢



A spaceship approaches the earth at a speed of 0.5c.
It fires an X-ray pulse at us, which has a speed of 1.0c
relative to the spaceship. What is the speed of the X-
ray pulse relative to the earth when it hits us?

(1) 0

(2) 0.5¢
(3) 0.8c
(4) 1.0c
(5 1.5¢



Q.37-1

An enemy spaceship approaches the earth at a speed of
0.5¢. It fires an X-ray pulse at us, which has a speed of
1.0c relative to the spaceship. What is the speed of the
X-ray pulse relative to the earth when it hits us?

B

Electromagnetic waves in vacuum always travel at
speed ¢ independent of motion of source or observer!

1) 0 (2)0.5¢c (3)0.8c¢ (5) 1.5¢



Q.37-1 (Alternative solution)

v+u'

U= >
1+u'v/c

Sc+ec  1.5¢
1+5x1 1.5

C




Kinetic Energy of a Fast Particle

General relation
for total energy:

E =y mc’
Rest energy, v=0: E =mc”

Kinetic energy: K = E — me” = (v — l)mcz
Momentum: P =} my

Relation between 5 N 5
momentum and energy: E°=(mc”)" +(pc)



37-2 An electron is moving with a
Q° - velocity v = 0.94¢, which means
that it has y = 3.

What is its Kinetic energy?

(Recall that the electron rest
energy mc? is about 0.5 MeV.)

(1) 0.17MeV (2)0.5MeV (3)1.0MeV (4)1.5MeV



An electron is moving with a

0Q.37-2 velocity v = 0.94¢, which means that
it has y = 3.

What is its kinetic energy?
(Recall that mc?2 is about 0.5 MeV.)

Total energyis E = ymc* =3x0.5MeV

Kinetic energy is

K=E—-mc*=15MeV —05MeV =1.0MeV

(1) 0.17 MeV (2) 0.5MeV | (3) 1.0 MeV | (4) 1.5 MeV



SLLAC: Stanford Linear Accelerator
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Accelerates electrons for 2 miles: E =y mc’ =20 GeV










Example: SLAC electron beam

e The Stanford Linear Accelerator
(SLAC) accelerates a beam of
electrons for two miles.

* The final Kinetic energy is 20 GeV.
 Whatis the electrons’ final velocity?



Step 1: find the y factor

We know E =y me* so given E,m solve for y.

leV =1V)x(e)=1.6x10" J
20 GeV =20x10° x1.6x107™"° =3.2x10" J
m=91x10"" kg

E 3.2x10~°

— — 3.9 X 104
me: 9.1x107'x9.0x10'

So Y=



Step 1 (cont’d)

Actually nobody would do it that way.

Don’t use mass 1n kg and energy 1n J.

E =20GeV =2x10° MeV and mc*=0.51 MeV

~ E  2x10*
4 mc” 0.51

=3.9%x10*




Solution

Now that we have y we can solve for v.

1 _ 2 _1/42
y = - 1 (v/c) =1/y
\/1_(V/C) vie=+1-1/5

p/e=1-1/(39x10*)* =\1-6.6x10™"
=/0.999999934 = 0.999999967




Example: “Newtonian” SLAC

 SLAC gives an electron an energy of 20 GeV
by providing a constant force acting over a
distance of about 2 miles, or about 3 km.

 What work is done during one meter of
flight?

* Using Newtonian Kinetic energy formula,
how long would the acceleration tube need to
be to bring the electrons to the speed of light?




Newtonian SLAC Solution

Work = Force x Distance

Acceleration for 3 km: 20 GeV =3.2%x10"° J
3.2x10~°

Acceleration for 1 m: ~1x107"* J

3000

Required to reach v=cusing W =K = 1 my’

W = 1mc2 =0.5%x9.1x107" x(3x10°)’ 24x10™ J

2
—14
:X:g_u ~4x10° m =4 cm
X

Distance needed 1s:




Error in Newtonian Solution

Newtonian answer for the distance needed is:

4%x10> m=4 cm

Distance needed in real life is:
3 km

Newtonian error factor is:

3km 3x10° m
4dem 4x1072 m

=.75%x10> = 75000



Review: Kinetic Energy

General relation
for total energy:

E =y mc’
Rest energy, v=0: E =mc”
Kinetic energy: K = FE — me’ = (7/— l)mcz

Momentum: P = ) my

Relation between 2 N 5
momentum and energy: E” = (m ¢ ) T (p C)



Exact vs non-relativistic calculations

Last time we saw that for the Stanford LINAC,
a nonrelativistic calculation was terribly wrong
(3 cm vs 2 miles).

That was a case where K >> mc2. (ER case)

Now let’s look at the case K << mc2. (NR case)



Example: He beam from THIA
K=300keV v=2?

mc’ =4x1GeV =4x10" eV )) K

So non-relativistic calculation should be OK.

/ZK
y=,—
m

5
v_ |2k \/6“0 &V  15x10" =.01224745

C mc’ 4x10° eV

"

y=.0122¢=3.67x10° m/s = 3.67 mm/ ns



Compare with exact relativistic answer
K =(y - Dmc’

5
K 320 eV 754107

mc”* 4x10° eV

y=1+

y = 1
\/1—(1)/0)2

Vol o oL 1-0.99985 = .01224676
c Y4 (1.000075)

Compare with non-relativistic approximation:

1224745 -1224676
1224676

=6x107° =.006 % error



Q.37-3

An electron (mc? = 0.5 MeV) moves with a speed
v =0.94¢ so that y = 3.

What is its Kinetic energy?

. 0.1 MeV
. 0.5 MeV
1.0 MeV
2.0 MeV
. 5.0 MeV



Q.37-3 mc®=0.5 MeV, y=3: K=?

K=E—-mc’=(y-1mc’
=(3-1) 0.5 MeV =1.0 MeV

1. 0.1 MeV
2. 0.5 MeV
4. 2.0 MeV
5. 5.0 MeV



Time Dilation

A lab observer compares two stationary clocks against
a clock moving with speed v, as it passes first one then
the other. Lab clocks give At, moving clock At,

At = yAt, 2 At,

Time measured in lab (At) is greater than proper
time At, measured by co-moving observer.

“Moving clocks run slow”.

1
y = >1
\/1—(v/c)2




Example: Problem 37-21

A clock moves along the x axis at speed v = 0.6¢
and reads zero as it passes the origin. What time
does the clock read as it passes x =180 m?

Lab time: Af= * 180 =1 us
y  .6x3x10%m/s
Gamma factor: y = 1 — l —=1.25
Vi-.6* 8
Proper time: | = At 1 us — 0.8 us

vy 1.25




Q.37-4

A clock moves relative to a laboratory, at speed v
such that y=5. During the time taken for the
moving clock to advance 10 ns, how much time
elapses according to the lab clocks?

(1)05ns 2)2ns (3)5ns (4)10ns (5 50 ns



Q.37-4

A clock moves relative to a laboratory, at speed v
such that y=5. During the time taken for the
moving clock to advance 10 ns, how much time
elapses according to the lab clocks?

Solution:

At = yAt =5 %10 ns =50 ns

(1)0Sns 2)2ns 3)Sns (4)10ns



Lorentz transformation

Einstein found that the old “self-evident” laws for
transformations between inertial frames must be
replaced by new ones.

J ¥ o
Galileo: y'— 5 — 17 ‘“ k
—7
&
«~—— Ve X’

Einstein: use the - x -
Lorent; transformation: . .

x'=y(x—vt) 1

where 7/ = \/

t'=y(t—vx/c?) 1-(v/c)



Example: Problem 37-19

Two tflashbulbs triggered simultaneously.

4 |
< |

30 km :

|
P g o, —.

Also viewed from moving frame.
A

—_—
25 ¢

=V



Use Lorentz transformation
x'=y(x—vt)
t'=y(t—vx/c*)

For each event, knowing x,t, calculate x',t'.



I{se Lorentz transformation
|

A 30 km g
|
° °, -
A B X
A
—
25 ¢

Coordinates in lab frame:
t,=t, =0, x, =0, X, =L=30km

Coordinates in moving frame:
¢,=0, x',=0, ¢,=?



Examble Use Lorentz transformation
P equation for time of event B in

continued moving frame.

1 1
y = = =1.0328
Ji—Gref  i-(25)
v ( 2\ _ 2
t',=y\t, —vx,/c )——va/c
4
_ 1.0328x0.2§x3x10 m=—25.8,us
3x10" m/s —_—

But t' ,=0. So B happens before A as seen in moving frame!



Example summarized

Times in lab frame:
L, =1, = 0

Times in moving frame:

r.=0 £,=-258 us

Events are not simultaneous in moving frame.

B is first, then A is 25.8 microseconds later.



The spacetime interval

Our text doesn’t stress this point, but there
is another way of expressing laws of special
relativity which is often simpler than using
the Lorentz transformation equations or
going back to the “two postulates”.

This is the invariant spacetime interval.




The spacetime continuum

Another way of expressing laws of special relativity which 1s
often simpler than using the Lorentz transformation equations.

* Instead of thinking of space and time
separately, think of a four-dimensional
spacetime. The “points” in this spacetime are
really events.

* Then the “distance” between events is called
the spacetime interval.

* Now relativity follows from the fundamental
assumption that the spacetime interval is
invariant: the same for all inertial observers.




The spacetime interval

Given two events (x,,t,) and (x,t,). Ay
=Xy X

As seen by 1nertial observer O they
At=t,—t,

are separated by intervals

As seen by another observer O'these  Ax'2 Ax
intervals are different (relative). Af = Af

But the space-time interval | A¢? = ¢2Af2 — Ax2
1S the same (invariant):

As'= As




The spacetime diagram

An alternative to the Lorentz transformation
equations is the invariant spacetime interval:

ct a

cAt

.'Ax>v

Two events

As® = (cAt) —(Ax)

As'= As

Unlike ordinary (Euclidean)
geometry, this interval can
be either positive (timelike)
or negative (spacelike).

>
X



Derive time dilation using As' = As.
Example

Two events occur at
| Ax =0, As=cAt
the same place:

Same events seen by observer moving with speed v:

Ax'=vAr', (As') =c(Ar) —(Ax')
(As')2 =c’ (At')2 — vz(At')2

As'= cAt'\/l — (v/c)2

S0 now use invariance of spacetime interval:

AS'= As gives Al"=Al‘/\/1—(V/C)2 = YAt




All Observers are Equivalent

In a moving reference frame, lengths contract, time dilates.
“Moving rods are short and moving clocks are slow!”

How is this possible if all inertial observers are equivalent?

If B moves with speed v relative to A, then B’s clocks are slow as
measured by A.

But according to B, it’s A that’s moving, so A’s clocks are slow as
measured by B.

Is this possible?

Yes, because they also disagree about how the clocks are
originally synchronized.

A careful analysis shows that the effect is perfectly symmetrical:
“Each observer thinks the other is using slow clocks!”




Simple Problem to Show Symmetry

Observers O and O’ with relative speed v.

'y —
| v X’
———— 8- -
C1’ L C2'

y

C1 L C2



[ [ I ’
Use invariant v " y
. O —— - X -
spacetime cr L C2’
interval 'y
O ——() — — X. —
Cl1 L C2

 FKour events: (a) C1' passes C1, (b) C1’ passes C2,
(¢) C2' passes C1, (d) C2' passes C2
* For each pair of events figure out the

invariant interval As’ = c¢’At’ — Ax’
 Now apply the invariance Ag'= As

Result: Find each observer thinks the other’s clocks
are slow and improperly synchronized!



Relativity 111

* Today:
— Time dilation examples
— The Lorentz Transformation
— Four-dimensional spacetime
— The invariant interval
— Examples

 Exam Tomorrow Chapters 33-37



Example: Problem 37-65

Can a long limo fit in a short garage temporarily?

~—L,—

(b) (¢)



37-65 (cont’d)
(a) Length of car according to Garageman

L
Li=f= Lov/1— 8% = (30.5m) /1 — (0.9980) = 1.93 m .

(b) Coordinates of event 2 according to Garageman

L,— L, 6.00m— 1.93m

— =136x10"%g.
v 0.9980{2.998 x 10% m/s) 36 1077 s

ﬂtg — tgﬂ — fgl —

(¢) Car spends this time inside according to G.

(d) Length of garage according to Carman

I = % = Lo\/T— 3 = (6.00m) /T — (0098072 = 0.379 m .




37-65 (cont’d)

(e) Time between events according to Carman

L.—- L Sm— 0.
Ab =t — tp— & 30.5m — 0.37T9m

v 0.9980(2.998 x 10° m/s)
Butt.,, =0 sot.,=-1.01x10"" s

So to Carman, event 2 occurs first, and the
car is never entirely inside the garage.

—101%x10 " 5.



