#### **OPTICS**

- Today:
  - Review refraction and lenses
  - Fermat's principle
  - Optical Instruments

#### **Review: Images**

We can use reflection and refraction to do lots of things with light, such as forming images. This is called geometric optics, and is of course the basis for a big industry. Again we have to master some terminology. The key distinction is between *real* and *virtual* images.

**<u>REAL IMAGE:</u>** The light is *really* brought to a focus, such as when you start a fire using sunlight and a lens.

**VIRTUAL IMAGE:** The light only *appears* to come from it, as when you seem to see Halley Berry inside your TV set, or your face behind the bathroom mirror.

#### **Optics Review**

# Formulas for spherical mirrors and thin lenses in the small angle approximation:

$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f} \qquad m = -\frac{i}{p}$$

- f = focal length: + = converging, = diverging
- p = object distance: + = real, = virtual
- i = image distance: + = real, = virtual
- m = magnification: + = erect, = inverted

#### **Three more points**

1. Dispersion

Index of refraction depends on wavelength! Prism spectrometer

2. Circular polarization

Light can carry angular momentum

3. Fermat's principle of least time Gives Snell's Law

#### **Fermat's Principle**

The path chosen by a light ray will bev = c/nthe one which*minimizes the time*. $n_2 > n_1$ 



#### **Fermat's Principle**

The path chosen by a light ray will be v = c/nthe one which *minimizes the time*.  $n_2 > n_1$ 









## The Eye and the Camera





### Focus <u>a Camera</u>



#### **Problem 35-37** f=5cm, p=1m

- Set for infinity, focal point of lens is on the film
- Actually focal plane.
- For closer object, move lens.
- Which way and how much?

$$\frac{1}{i} = \frac{1}{f} - \frac{1}{p} = \frac{1}{5} - \frac{1}{100} = .20 - .01 = .19$$
$$i = 1/0.19 = 5.26 \ cm$$
$$x = i - f = 2.6 \ mm$$







Focus the Eye Problem 35-35 f = 2.50 cm, p = 40.0 cm

- Set for infinity, focal point of lens is on the retina.
- For closer object, reshape lens.
- What should be new focal length?



$$\frac{1}{f'} = \frac{1}{p} + \frac{1}{i} = \frac{1}{40} + \frac{1}{2.5}$$
$$= .025 + .400 = .425$$
$$f' = 1/.425 = 2.35 \ cm$$

#### **Systems of Lenses**

For a system of two or more lenses, treat the lenses one at a time. The *image* formed by the first acts as the *object* for the second. Note that this can result in a *virtual object* (p<0).



# $f_1 = -15 \ cm, \quad f_2 = +12 \ cm, \quad p_1 = +10 \ cm$

#### First the principal rays for lens 1:

Image looks to be virtual, erect, and reduced.



$$f_1 = -15 \ cm, \quad f_2 = +12 \ cm, \quad p_1 = +10 \ cm$$
  
 $i_1 = -6 \ cm, \quad m_1 = 0.6, \quad p_2 = +18 \ cm$ 

Now do the principal rays for lens 2:

Final image is real and inverted.



**Overall magnification of two-lens system:** 

$$m_{tot} = m_1 m_2 = (0.6)(-2) = -1.2$$

Final image is real, inverted, enlarged.





#### Find image due to lens 1:

 $i_1 = 6cm$   $m_1 = -1$ Real image due to lens 1. Virtual object for lens 2.

$$p_2 = -(i_1 - L) = -2cm$$



Find image due to lens 2:

$$i_2 = +4cm$$
  $m_2 = +2$   
Real image due to lens 2.  
 $m_{TOT} = m_1 \times m_2 = -2$ 

Final result is real, inverted and enlarged.

Q.35-3



Q.35-3



Q.35-4



**Q.35-4** 



#### **Astronomical Telescopes**

#### **Ritter Observatory**



#### **Ritter 1-meter reflector**



## Styles of Reflectors

Goal: Collect as much light as possible, with the fewest possible reflections.



# Herschel Telescope

European 4-meter reflector on the Canary Islands

Collects 16 times as much light as we do at Ritter.



#### **Ritter 1-meter Reflector**



• **Problem:** What do we need for  $f_2$ , the focal length of the secondary mirror?



#### Mirror 1: Image formed at focus $F_1$

Mirror 2: Virtual object p = -1m, real image i=3m.

$$\frac{1}{f_2} = \frac{1}{p_2} + \frac{1}{i_2} = \frac{1}{-1} + \frac{1}{3} = -\frac{2}{3} \qquad f_2 = -\frac{3}{2} = -1.5 m$$

So we want a diverging mirror with f=1.5m.

#### **Optics Review**

# Formulas for spherical mirrors and thin lenses in the small angle approximation:

$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f} \qquad m = -\frac{i}{p}$$

- f = focal length: + = converging, = diverging
- p = object distance: + = real, = virtual
- i = image distance: + = real, = virtual
- m = magnification: + = erect, = inverted

#### INTERFERENCE

- Today Ch. 35 Interference
  - The general idea
  - Examples
    - Two slits
    - Phase change on reflection
    - Thin films
    - Interferometers
  - Intensities

#### **Review of Waves (Ch. 16)**



#### **Interference of Two Waves**

Adding two waves of the same frequency:

$$E_{1} = E_{1}^{0} \sin(kx - \omega t)$$
$$E_{2} = E_{2}^{0} \sin(kx - \omega t + \phi)$$
$$E_{T} = E_{1} + E_{2} = ?$$

Answer: 
$$E_T = E_T^0 \sin(kx - \omega t + \phi_T)$$

Result is a wave of the same frequency. Usually we want the *amplitude*  $E_T^{0}$  or the *intensity*  $I_T$ .

#### **Phase and Path Differences**

One way to get a *phase difference*  $\Delta \phi$  between two waves is to arrange for a *path difference*  $\Delta L$ .

The *general relation* between phase difference and path difference is  $\Delta L$ 

$$\Delta \phi = k \Delta L = 2\pi \frac{\Delta L}{\lambda}$$

Remember k is phase per unit length:  $E = E^0 \sin(kx - \omega t)$ 

#### **Simple Interference**

**Constructive case:** 

$$E_T^{0} = E_1^{0} + E_2^{0}$$

$$\phi = m(2\pi) \quad \Delta L = m\lambda$$
Note if  $E_1^0 = E_2^0$  then  $E_T^0 = 2E_1^0$  and  $I_T = 4I_1$ 

Destructive case:  

$$E_T^{\ 0} = E_1^{\ 0} - E_2^{\ 0}$$

$$\phi = (m + \frac{1}{2})2\pi \quad \Delta L = (m + \frac{1}{2})\lambda$$
Note if  $E_1^{\ 0} = E_2^{\ 0}$  then  $E_T^{\ 0} = 0$  and  $I_T = 0$ 

#### **The Double Slit Experiment**



Interference "fringes" due to alternating constructive and destructive interference between rays from  $S_1$  and  $S_2$ .





#### **Bright and Dark Fringes**

So the *bright fringes* are at angles given by

 $d\sin\theta = m\lambda$ 

And the *dark fringes* are at angles given by

 $d\sin\theta = (m+\frac{1}{2})\lambda$ 

# **Locating the Fringes** Incident wave S2. $S_1$ R

(a)

For a bright spot we need  $d\sin\theta = m\lambda$ .

From the figure we see  $\tan \theta = y/D$ .

**But for small angles** we have  $\sin\theta \approx \tan\theta$ .

So the bright lines are at  $m\lambda = dy/D$  $v = m \lambda D / d$ 

### **Double Slit Example**

Given a double slit experiment with wavelength 450 nm, slit separation 0.3 mm, distance to screen 2 m, where will be the bright fringes?

 $y = m \lambda D / d$  with  $m = 0, 1, 2, \cdots$ 

$$\lambda D / d = \frac{.45 \times 10^{-6} \times 2}{.3 \times 10^{-3}} = 3 \, mm$$

So the bright lines are at y = 0, 3 mm, 6 mm, 9 mm, etc.

Note the angles really are small:

$$\theta \approx \frac{6 mm}{2 m} = .003 \ rad = 0.17^{\circ}$$



- Two rays from *S* arrive at *P*. Path difference gives interference. Expect as angle  $\rightarrow 0$ , get *constructive*.
- Wrong! It's destructive. Why?
- Because reflection from medium of higher *n* always gives a phase change of 180°.
- (Maxwell says so!)

# **Michelson Interferometer**

Another device for getting optical interference.

$$\Delta L = 2d_1 - 2d_2$$

As d2 is changed, we see series of bright and dark fringes. Bright when  $\Delta L = m\lambda$ 

And dark when  $\Delta L = (m + \frac{1}{2})\lambda$ 



# Phase Difference Due To Different Index of Refraction

Yet another way to get 2 light waves out of phase.

# **Thin Film Interference**

There are many ways to get a phase difference between two rays of light and so get interference.



When do rays r<sub>1</sub> and r<sub>2</sub> interfere destructively so there is no reflection?

For  $\theta=0$  and  $n_1 < n_2 < n_3$  the answer is easy: when the path difference 2L equals  $\lambda/2$ . (Or  $3\lambda/2$ , ...)

# **Thin Film Example**

Problem 36-33.Reflection of red light from a soapfilm with air on both sides.What thickness willgive strong reflection? $\lambda_0 = 624 nm$ n = 1.33

Wavelength in film:  $\lambda = \lambda_0 / n = 624 / 1.33 = 469 nm$ 

Phase change on reflection at front surface but not at back. So condition for strong reflection is

$$2L = (m + \frac{1}{2})\lambda$$
 Solution:  $L = \lambda/4 = 117 nm$   
 $L = 3(117) = 352 nm$ 

### Recap

- We have discussed conditions for constructive and destructive *interference* in terms of the *phase difference* Δφ:
  - Constructive:  $\Delta \varphi = 0, 360^{\circ}, 720^{\circ}, \dots$
  - Destructive:  $\Delta \phi = 180^{\circ}, 540^{\circ}, \dots$
- We have looked at 5 different ways to arrange for interference between two light waves:
  - Double slit, Reflection from glass surface, Thin films,
     Michelson interferometer, Different index of refraction.
- In most cases, we achieve a phase difference by arranging to have a *path difference*  $\Delta L$ :
  - Constructive:  $\Delta L = \lambda$ ,  $2\lambda$ ,  $3\lambda$ , ...
  - Destructive:  $\Delta L = \lambda/2, \ 3\lambda/2, 5\lambda/2, \dots$

#### **Interference: The General Case**

What if the phase difference is neither 0 nor 180° but something in between? How can we calculate the resultant amplitude?

Use phasors!

# **Phasor Diagram**

Just as for AC circuits, we can add two oscillating functions using phasors. The *lengths* of the phasors are the *amplitudes* of the waves and the *angle* between the phasors is the *phase difference* between the waves. Then the *length* of the resultant phasor is the amplitude of the total wave.





# **Adding Vectors**

A good way to get the length of the sum of two vectors is to use the *dot product:* 



# **Intensity Formula**

Suppose two light waves have *equal intensities*  $I_0$  and a *phase difference* of  $\phi$ . When these waves interfere, what will be the total intensity I?



Text equations 35-22,23; proved on p. 970.

#### **Double-slit intensity**



#### **Intensity Example** Problem 35-29 revised.

Two waves interfere with phase difference  $\phi = 60^{\circ}$ . One wave has intensity  $I_0$ , the other  $4I_0$ . What is the resulting intensity?

$$E^{2} = E_{1}^{2} + E_{2}^{2} + 2E_{1}E_{2}\cos\phi$$

$$E_{2}^{2}$$

$$E^{2} = E_{0}^{2} + 4E_{0}^{2} + 2E_{0}(2E_{0})(1/2)$$

$$= 5E_{0}^{2} + 2E_{0}^{2}$$
But  $I = (Const)E^{2}$ 
so  $I = 5I_{0} + 2I_{0} = 7I_{0}$