DC Circuits

- Resistance Review
- Following the potential around a circuit
- Multiloop Circuits
- RC Circuits

Homework for today:
Read Chapters 26, 27
Chapter 26 Questions 1, 3, 10
Chapter 26 Problems 1, 17, 18, 35, 77

Homework for tomorrow:
Chapter 27 Questions 1, 3, 5
Chapter 27 Problems 7, 19, 49
WileyPlus assignment: Chapters 26, 27

Review: Series and Parallel Resistors

Series:
\[R = R_1 + R_2 + R_3 \]

Parallel:
\[\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \]

Following the Potential

Study Fig. 27-4 in the text to see how the potential changes from point to point in a circuit.

Note the net change around the loop is zero.

Q.27-1

With the current \(i \) flowing as shown, which is at the **higher potential**, point \(b \) or point \(c \)?

1) \(b \) is higher
2) \(c \) is higher
3) They are the same
4) Not enough information

Solution

With the current \(i \) flowing as shown, which is at the **higher potential**, point \(b \) or point \(c \)?

Solution:
Current flows from high to low potential just like water flows down hill.

(1) \(b \) is higher
(2) \(c \) is higher
(3) They're the same
(4) Not enough info
Example: Problem 27-30

Problem 27-30 (part a)

\[\mathcal{E} = 6.0 \, V \quad R_1 = 100 \, \Omega \]
\[R_2 = R_3 = 50 \, \Omega \]
\[R_4 = 75 \, \Omega \]

(a) Find the equivalent resistance of the network.

(b) Find the current in each resistor.

\[\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{300} + \frac{1}{16} = \frac{19}{300} \]

\[R_{eq} = 16 \, \Omega + 9 \, \Omega = 25 \, \Omega \]

\[i_1 = \frac{\mathcal{E}}{R_{eq}} = \frac{6.0}{25} = 0.24 \, \text{mA} \]

\[i_2 = \frac{V}{R_2} = \frac{0.95}{50} = 0.019 \, \text{mA} \]

\[i_3 = \frac{V}{R_3} = \frac{0.95}{50} = 0.019 \, \text{mA} \]

\[i_4 = \frac{V}{R_4} = \frac{0.95}{75} = 0.012 \, \text{mA} \]

Check: These three add up to \(i_1 = 0.24 \, \text{mA} \).

Problem 27-30 (part b)

(b) Find the current in each resistor.

First note that \(i_2 R_2 = i_3 R_3 = i_4 R_4 \).

\[V = iR_{234} = 0.050 \times 19 \, \Omega = 0.95 \, V \]

So

\[i_2 = V / R_2 = 0.95 / 50 = 0.019 \, \text{mA} \]

\[i_3 = V / R_3 = 0.95 / 50 = 0.019 \, \text{mA} \]

\[i_4 = V / R_4 = 0.95 / 75 = 0.012 \, \text{mA} \]

Check: These three add up to \(i_1 = 0.24 \, \text{mA} \).

Q.27-2

1) 1 A
2) 2 A
3) 3 A
4) 4 A
5) 5 A
6) 6 A
7) 7 A
8) 8 A
9) 9 A

\[R_2 = 2 \, \Omega \]
\[R_3 = 3 \, \Omega \]
\[i_2 = 6 \, \text{A} \]
\[i_3 = \text{?} \]

\[V_b - V_c = i_2 R_2 = i_3 R_3 \]

\[\therefore i_3 = \frac{i_2 R_2}{R_3} = \frac{2}{3} i_2 = 4 \, \text{A} \]
More Complicated Circuits

How do we solve a problem with more than one emf and several loops? We can’t do it just by series and parallel resistor combinations.

Rules for Multiloop Circuits

- **The net voltage change around any loop is zero.**
 “Energy conservation”
- **The net current into any junction is zero.**
 “Charge conservation”

Using these two rules we can always get enough equations to solve for the currents if we are given the emfs and resistances.

Example

\[\mathcal{E}_1 = 24 \text{V} \]
\[\mathcal{E}_2 = 12 \text{V} \]
\[R_1 = 5 \Omega \]
\[R_2 = R_3 = 30 \Omega \]

Find all currents!

First define unknowns: \(i_1, i_2, i_3 \)

Loop and junction equations:
\[
\mathcal{E}_1 - i_1 R_3 - i_1 R_1 = 0 \\
\mathcal{E}_2 - i_2 R_2 - i_1 R_1 = 0 \\
i_1 = i_2 + i_3
\]

Put in the given numbers and also replace \(i_1 \) by \(i_2 + i_3 \):
\[
5i_1 + 30i_3 = 5i_2 + 30i_3 = 24 \\
5i_1 + 30i_2 = 35i_2 + 5i_3 = 12
\]

Solve two equations in two unknowns to get:
\[i_2 = 250 \text{ mA} \]
\[i_3 = 650 \text{ mA} \]

Add to get
\[i_1 = i_2 + i_3 = 900 \text{ mA} \]

Example (continued)

Left-hand loop:
\[\mathcal{E}_1 - i_1 R_3 - i_1 R_1 = 0 \]
Right-hand loop:
\[\mathcal{E}_2 - i_2 R_2 - i_1 R_1 = 0 \]
Junction:
\[i_1 = i_2 + i_3 \]

Algebra: solve 3 equations for 3 unknowns \(i_1, i_2, i_3 \)

Check by using outer loop:
\[
\mathcal{E}_1 - i_1 R_3 + i_2 R_2 - \mathcal{E}_2 = 0 \\
24 - 30(0.65 - 0.25) - 12 \\
= 12 - 12 \\
= 0
\]
Repeat with a different R_1

Exercise for the student: Same equations give **negative** i_2 in this case! This means current going downward through right-hand battery.

Back to Basics

- Examples that don’t involve so much algebra, but focus on the ideas of current and voltage.
- Even though you have a multiloop circuit so you need to write down the equations from the loop rule and the junction rule, you may not have to actually solve simultaneous equations.

Simpler Examples

Both these problems can be solved for **one unknown at a time**, without messy algebra.

Discharging a Capacitor

Capacitor has charge Q_0.
At time $t=0$, close switch.
What is charge $q(t)$ for $t>0$?

Obviously $q(t)$ is a function which decreases gradually, approaching zero as t approaches infinity.
What function would do this?

$$ q(t) = Q_0 e^{-t/\tau} $$

But what is the **time constant** τ?

Analyze circuit equation: find $\tau = RC$

Charging a Capacitor

$$ V $$

For small t, $q=0$ and $i=V/R$.
For large t, $q=CV$ and $i=0$.

$$ q(t) = CV \left[1 - e^{-t/\tau} \right] $$

$$ \tau = RC $$
DC Circuits

- Resistance Review
- Following the potential around a circuit
- Multiloop Circuits
- RC Circuits

Homework for today:
- Read Chapters 26, 27
- Chapter 26 Questions 1, 3, 10
- Chapter 26 Problems 1, 17, 18, 35, 77

Homework for tomorrow:
- Chapter 27 Questions 1, 3, 5
- Chapter 27 Problems 7, 19, 49
- WileyPlus assignment: Chapters 26, 27

Exam #1

Exam #1

Ave = 65

18 F

12 A

Ave = 65

12 A