Electromagnetic Fields

- Ch.28: The magnetic field: Lorentz Force Law
- Ch.29: Electromagnetism:
 - *B* field due to a current in a long straight wire
 - **B** field due to a current in a short bit of wire
 - **Ampere's Law:** the third of Maxwell's Equations
- Ch.30: Induced E Fields: Faraday's Law

REVIEW: Field of a long straight wire

1. Direction is given by the right-hand rule!

2. Magnitude is
$$B = \frac{\mu_0 i}{2\pi r}$$

3. New universal constant:

$$\mu_0 = 4\pi \times 10^{-7} Tm / A$$

REVIEW: Field due to a *short bit* of wire

Recall Coulomb: *E* is **parallel** to *r*.

But as usual for magnetism, we find *B* is **perpendicular** to *r*!

$$d\vec{B} \propto i \, d\vec{s} \times \vec{r}$$

Another right-hand rule!

REVIEW: Ampere's Law
$$\oint_{C} \vec{B} \cdot d\vec{s} = \mu_0 i_{enc}$$

C = Any closed path

i_{enc} = Net current linking C (*Right-hand rule*)

B = The total magnetic field

ds = A short step along the path

Example: Sample Problem 29-2

Two long parallel wires are perpendicular to the screen. One carries current i_1 <u>out of</u> the screen, the other carries current i_2 <u>into</u> the screen, as shown.

$$i_1 = 15 A$$

 $i_2 = 32 A$

What is the magnetic field at point P? (Notice the right angle at P.)

Example continued $B_1 = 8 \times 10^{-5} T$ What is the magnetic field at point P? $B_2 = 17 \times 10^{-5} T$

 $B_{r} = B_{1r} + B_{2r}$ $= B_2 \cos 45^\circ - B_1 \cos 45^\circ$ $=(17-8)\times10^{-5}/\sqrt{2}=64 \ \mu T$ $B_{v} = B_{1v} + B_{2v}$ $= B_1 \sin 45^\circ + B_2 \sin 45^\circ$ $=(17+8)\times 10^{-5}/\sqrt{2}=180 \ \pi T$ $\boldsymbol{B} = \sqrt{\boldsymbol{B}_x^2 + \boldsymbol{B}_v^2}$ $=\sqrt{64^2+180^2}=190 \ \mu T$

Q.29-1

A long straight horizontal wire carries a current *i* in the direction shown. What is the direction of the magnetic field at point *P*, vertically above the wire?

Q.29-1

What is the direction of the magnetic field at point *P*?

Right-hand rule: thumb with current, field with fingers.

P(1) Up (2) Down (3) Right (4) Left
(5) Into the screen (6) Out of the screen

Dipole Moment of a Current Loop

Definition: Magnetic dipole moment vector:

- Direction: *RH rule*
- Magnitude: $\mu = iA$

Analogous to electric dipole moment vector \vec{p}

Field Due to a Current Loop

Serway, College Physics, 5/e Text Figure 19.28a,b

Right-hand rule: fingers with current, thumb gives direction of field on axis.

Q.29-2

Two wire loops carry currents as shown. If I puta small compass needle at point P, in which direction will it point?

(1) +x (2) -x (3) +y (4) -y (5) +z (6) -z

Right-hand rule: fingers with current, thumb gives field inside the loop.

Field Due to a Solenoid

Calculating the Field in a Solenoid

Example: Problem 29-40

Solenoid of length 1.0 m and diameter 5 cm has 1200 turns and carries current of 4 A. Calculate the magnetic field inside.

$$B = \mu_0 n i$$

 $n = \frac{1200}{0.5} = 2400$ turns per meter.

 $B = \mu_0 ni = 4\pi \times 10^{-7} \times 2400 \times 3 = 9 \times 10^{-3} T$

Field in a Toroid

The textbook derives the field in a solenoid. A toroid is just a solenoid bent into a circle.

N = total number of turns

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc} = \mu_0 iN$$
So $B = \frac{\mu_0 iN}{2\pi r}$

600000000

(b)

 \vec{B}

Torque on a Current Loop

Given dipole $\vec{\mu}$ placed in magnetic field \vec{R}

Torque on loop due to field: $ec{ au}$

- Direction: turns µ toward B.
- Magnitude: $\tau = \mu B \sin \theta$

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Potential Energy of Current Loop

Work required to turn dipole moment *against* the field.

$$\boldsymbol{U}=-\vec{\boldsymbol{\mu}}\cdot\vec{\boldsymbol{B}}$$

Hinged coil in B field.

Use:
$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

 $\mu = iA$
 $\tau = \mu B \sin \theta$

So:

 $\tau = iAB\sin\theta$

 \vec{F}

Induction and Oscillations

Ch. 30: Faraday's Law Ch. 31: AC Circuits **Induced EMF:** Faraday's Law "Time-dependent *B* creates induced *E*"

In particular: A *changing magnetic flux* creates an *emf in a circuit*:

Electromagnetic Induction

Current in secondary circuit can be produced by *a changing* **current in primary circuit.**

Demonstrations

- EMF induced in a coil by moving a bar magnet
- EMF induced in a secondary coil by changing current in primary coil

Sorry, we can't do it in this packed room ... but here is the essence of it

EMF induced in a coil by moving a bar magnet

EMF induced in a secondary coil by changing current in primary coil

Magnetic Flux

We define *magnetic flux* Φ exactly as we defined the flux of the electric field. The idea is the number of lines of **B** that pass through an area.

$$\Phi = \int \vec{B} \cdot d\vec{A}$$

Simple case #1: uniform B, \perp surface: $\Phi = BA$

Simple case #2: surface is *closed*: $\Phi = 0$

Faraday's Law
$$\mathcal{E} = -\frac{d\Phi}{dt}$$

The emf induced in any loop or circuit is equal to the negative rate of change of the magnetic flux through that loop.

Voltmeter reading gives *rate of change* of the number of lines linking the loop.

Changing Magnetic Flux
$$\Phi = \int \vec{B} \cdot d\vec{A}$$

How can we get a time-changing flux, so that $\mathcal{E} = -\frac{d\Phi}{dt} \neq 0$?

- Change the field: $\Phi = B(t) A$
- Change the area: $\Phi = B A(t)$
- Change the angle: $\Phi = B A \cos \theta(t)$

Example 1

A circle of radius 20 cm in the *xy* plane is formed by a wire and a 3-ohm resistor. A uniform magnetic field is in the *z* direction; its magnitude decreases steadily from .08 tesla to 0 in a time of 4 seconds.

What emf is generated?

$$A = \pi r^{2} = 0.13 m^{2} \qquad \frac{dB}{dt} = -\frac{.08 T}{4 s} = -.02 T / s$$

$$\mathcal{E} = -\frac{d\Phi}{dt} = -A\frac{dB}{dt} = -(.13)(-.02) = 2.6 \times 10^{-3} V$$

The *direction* of the induced emf is such as to create a current which will *oppose the change* in the flux.

Motion as shown produces clockwise current which makes B field opposing the increase.

Example 2

I push a rod along metal rails through a uniform magnetic field.

- (a) What emf is generated?
- (b) What current will flow?
- (c) What power must I supply?

(a) What emf is generated?

$$\frac{dA}{dt} = L\frac{dx}{dt} = Lv = 0.6 \, m^2 \, / \, s$$

$$\mathcal{E} = -\frac{d\Phi}{dt} = -B\frac{dA}{dt} = -.05 \times 0.6 = -30 \, mV$$

(b) What current will flow?

$$i = \frac{\mathcal{E}}{R} = \frac{-30 \times 10^{-3} V}{15 \Omega} = -2 mA$$

Which direction does current flow? *Forget the minus sign.* Use Lenz's Law!

Flux is *increasing outward*. Therefore current will *resist that change* by flowing *clockwise*.

(c) What power must I supply?

Magnetic force:
$$\vec{F} = i\vec{L} \times \vec{B}$$

 $F = .002 \times .2 \times .05 = 2 \times 10^{-5} N$
Power: $P = Fv = (2 \times 10^{-5} N)(3 m/s) = 6 \times 10^{-5} W$
Check Joule heating: $P = i^2 R = 6 \times 10^{-5} W$

Inductance

- For any coil of wire, there is a flux Φ through the coil, which is proportional to the current.
- If that changes, Faraday's Law requires an emf *induced* in the coil, proportional to the *rate of change* of the flux.
- Clearly $\Phi \propto i$ and so $\mathcal{E} = -\frac{d\Phi}{dt} \propto -\frac{di}{dt}$
- Define the proportionality constant to be the *inductance L:*

$$\mathcal{E} = -L\frac{di}{dt}$$

• SI unit of inductance is the henry (H).

Inductors

If current is *increasing*, the induced emf acts against the increase, giving a voltage *drop*.

If current is *decreasing*, the induced emf acts against the decrease, giving a voltage *rise*.

Energy in an Inductor

The energy stored in an inductor equals the work required to set up the current.

$$dW = Vdq = V\frac{dq}{dt}dt = (L\frac{di}{dt})idt = Lidi$$
$$W = \int dW = L\int_{0}^{I} idi = \frac{1}{2}LI^{2}$$
So energy stored in an inductor is $U = \frac{1}{2}Li^{2}$

Magnetic Field Energy

The energy stored in an inductor is contained in the *magnetic field*. The general formula for the *energy density* in any magnetic field is

$$u=\frac{B^2}{2\mu_0}$$

Inductors and Resistors

Voltage changes going clockwise around this loop:

$$+\mathcal{E}-iR-L\frac{di}{dt}=0$$

Inductor gives voltage *drop* if current is *increasing*.

Same equation as for charging a capacitor!

Try same kind of solution:

$$i = \frac{\mathcal{E}}{R} \left\{ 1 - e^{-t/\tau} \right\}$$

This works, provided

$$\tau = L / R$$

Set switch to position b:
$$i = \frac{\mathcal{E}}{R} e^{-t/\tau}$$

In either case time constant is:

$$au = L / R$$

(a) What is the time constant? $\tau = L/R = \frac{15 \times 10^{-3}}{5 \times 10^{3}} = 3 \times 10^{-6} = 3 \ \mu s$ (b) What is current after 1 second? $i = \frac{\mathcal{E}}{R} \left\{ 1 - e^{-t/\tau} \right\} = \frac{30}{5000} (1 - 0) = 6 \ mA$ Example 2: Problem 30-89

(a) What happens*immediately* afterswitch is closed?

L prevents sudden change so:

$$i_2 = 0$$
 \therefore $i = i_1 = \mathcal{E} / R_1$
So: $V_{R2} = 0$ \therefore $V_L = \mathcal{E}$ and $\frac{di_2}{dt} = \mathcal{E} / L$

Example 2 continued

We have reached a steady state so: $\frac{di_2}{dt} = 0 \quad \therefore \quad V_L = 0 \quad \text{and} \quad V_{R2} = \mathcal{E}$

So:
$$i_1 = \mathcal{E} / R_1$$
, $i_2 = \mathcal{E} / R_2$, $i = i_1 + i_2$