Magnetic Fields

- Ch.28: The magnetic field: Lorentz Force Law
- Ch.29: Electromagnetism: Ampere’s Law

HOMEWORK

- Read Chapters 28 and 29
- Do Chapter 28 Questions 1, 7
- Do Chapter 28 Problems 3, 15, 33, 47
Today

- The Magnetic Field B.
 - Field lines
 - Direction: compass needle
- Gauss’s Law for B.
- The Lorentz Force.
- Force on current-carrying wire.
- Motion of charged particles in uniform B field.
- Vector cross product and right-hand rule!
The Magnetic Field

- Another vector field $\vec{B}(F)$.
- Lines of \vec{B}:
 - Direction indicated by compass needle.
 - Never begin or end.
 - Density indicates field strength.
Bar magnets

[Dipole Fields]
Bar magnets

[DIPOLE FIELDS]

N + S Poles
Like poles repel
Unlike poles attract

However:
Monopoles do not exist! Only dipoles!
Bar magnets

[DIPOLAR FIELDS]
Gauss’s Law for Magnetism

• Outward *electric* flux = enclosed charge
• Outward *magnetic* flux = zero.
• “There are no magnetic monopoles.”
• This is Maxwell Equation #2:

\[\oint \vec{B} \cdot d\vec{A} = 0 \]
Bar magnet

Possible closed Gaussian surfaces shown in red. Zero net outward flux in both cases.
Magnetic Field of Earth

Approximately a dipole field.
The Magnetic Force

If a particle with electric charge q moves with velocity \mathbf{v} through a magnetic field \mathbf{B}, then the force by the field on the particle is

$$\mathbf{F} = q \mathbf{v} \times \mathbf{B}$$

Unlike the electric force $F = qE$, the magnetic force on a charged particle is **NOT** in the direction of the magnetic field. In fact, it is *perpendicular to it*.
Cross Product of Two Vectors

Given any two vectors \(\mathbf{A} \) and \(\mathbf{B} \), and \(\theta \) the angle between them, we define the vector product (cross product)

\[
\mathbf{C} = \mathbf{A} \times \mathbf{B} : \\
\]

(1) \(C = AB \sin \theta \)

(2) \(\mathbf{C} \) is perpendicular to both \(\mathbf{A} \) and \(\mathbf{B} \)

(3) The direction of \(\mathbf{C} \) is given by the righthand rule
The Right-Hand Rule

\[
\vec{C} = \vec{A} \times \vec{B}
\]

If \(\vec{C} = \vec{A} \times \vec{B} \)

We use the right-hand rule to find the direction of the vector \(\vec{C} \).

Use the fingers of your right hand to rotate \(\vec{a} \) toward \(\vec{b} \), then your thumb points in the direction of \(\vec{a} \times \vec{b} \).
Given vectors \vec{A} and \vec{B} with angle θ between them. For fixed magnitudes A, B, for what value of θ will the value of $\vec{A} \times \vec{B}$ be a maximum?

1) 0°
2) 30°
3) 45°
4) 60°
5) 90°
Q.28-1

Given any two vectors A and B, and θ the angle between them, we define the magnitude of the cross product as

$$ C = AB \sin \theta $$

But $\sin \theta$ has its maximum value when $\theta = 90^\circ$

So if A and B are perpendicular the magnitude of the cross product is a maximum, and is just AB.
Suppose I have vector \(\mathbf{A} \) pointing to the east and vector \(\mathbf{B} \) pointing to the north.

What is the direction of \(\mathbf{A} \times \mathbf{B} \)?

1) North
2) South
3) East
4) West
5) Up
6) Down
Suppose I have vector \vec{A} pointing to the east and vector \vec{B} pointing to the north.

What is the direction of $\vec{A} \times \vec{B}$?

1) North
2) South
3) East
4) West
5) Up
6) Down
The Right-Hand Rule

If you use the fingers of your right hand to rotate \mathbf{v} toward \mathbf{B}, then your thumb points in the direction of $\mathbf{v} \times \mathbf{B}$.

So in the figure the force on $+q$ is upward, but the force on $-q$ is downward.
Units

The SI unit for the magnetic field is the *tesla* (T). Since $F = qvB$, we have $B = F/qv$ and $1\text{T} = 1\text{Ns}/\text{Cm}$.

Another unit sometimes used is the *gauss* (G).

$$1\text{T} = 10^4 \text{G}$$

The field of the earth is typically about 1 G.
Force on Current-carrying Wire

For wire perpendicular to B we have

\[F = qvB \]

But \[i = \left(\frac{q}{L} \right) v \]

So \[F = qvB = BiL \]

Force on length L

If B is at angle \(\theta \) with wire: \[F = BiL \sin(\theta) \]
The Magnetic Force

If a particle with electric charge q moves with velocity \vec{v} through a magnetic field \vec{B}, then the force by the field on the particle is

$$\vec{F} = q \vec{v} \times \vec{B}$$

If a wire of length L carries a current i through a field B, the force by the field on the wire is

$$\vec{F} = i \vec{L} \times \vec{B}$$
Example

Given wire in field with angle $\phi = 37^\circ$. $B = 0.3T$, $i = 20$ mA. Find force per unit length on wire.

(1) Direction of force: By right-hand rule, force is upward as shown.

(2) Magnitude of force:

$$F = i |\vec{L} \times \vec{B}| = iLB \sin \phi$$

$$F / L = iB \sin \phi = .02 \times .3 \times .6 = 3.6 \times 10^{-3} \text{ N} / \text{m}$$
Electron gun: potential V gives electron energy in eV.

$$K = \frac{1}{2}mv^2 = qV$$

So if $V = 500$ volts, electron energy is $K = 500$ eV.
Crossed Fields

Crossed E and B fields:

If $qE = qvB$ then $F = 0$

To deflect beam upward, increase E.
Forces on electron.

\[F_B = e\nu B \]

\[F_E = eE \]

\[F = F_E - F_B = e(E - \nu B) \]

If \(\nu = \frac{E}{B} \), then \(F = 0 \)
Positive ion enters field with energy

\[K = \frac{1}{2}mv^2 = qV \]

So \(F \) does no work so \(K \) remains constant and so as the ion moves through field its \textit{speed} remains constant.
Charge in Uniform B Field

B is *out of* screen so F is *toward center* so ion moves in circle with constant speed.

Centripetal acceleration is $a = v^2 / r$

\[\therefore F = qvB = ma = mv^2 / r \]

So solving for r gives the radius of curvature of the path:

\[r = \frac{mv}{qB} \]
Charge in Uniform B Field

Applications

- Mass Spectrometer
- Isotope Separator
- Particle Accelerator
Electromagnetic Fields

• Ch.28: The magnetic field: Lorentz Force Law
• Ch.29: Electromagnetism: Ampere’s Law

• Chapter 28 Questions 1, 7
• Chapter 28 Problems 3, 15, 33, 47
TODAY: Electromagnetism

Production of magnetic field by a current

- B field due to a current in a long straight wire
- B field due to a current in a short bit of wire
- **Ampere’s Law**: the third of Maxwell’s Equations
Field Due to a *Long Straight Wire*

Lines of B make circles around wire!
BUT FIRST REVIEW:
The Lorentz Force

If a particle with electric charge q moves with velocity v through a magnetic field B, then the force by the field on the particle is

$$\vec{F} = q \vec{v} \times \vec{B}$$

If a wire of length L carries a current i through a field B, the force by the field on the wire is

$$\vec{F} = iL \times \vec{B}$$
REVIEW: The cross product

Given vectors \(\mathbf{v} \) and \(\mathbf{B} \), and \(\theta \) the angle between them, we define the vector product (cross product) \(\mathbf{v} \times \mathbf{B} \):

1. Magnitude is \(vB\sin\theta \).
2. Right-hand rule gives direction, perpendicular to both \(\mathbf{v} \), \(\mathbf{B} \).
Example

Given wire in field with angle $\phi = 37^\circ$. $B = 0.3\, \text{T}$, $i = 20\, \text{mA}$. Find force per unit length on wire.

(1) Direction of force:
By right-hand rule, force is upward as shown.

(2) Magnitude of force:
\[F = i|\vec{L} \times \vec{B}| = iLB \sin \phi \]

\[F / L = iB \sin \phi = 0.02 \times 0.3 \times 0.6 = 3.6 \times 10^{-3}\, \text{N} / \text{m} \]
An electron with speed v enters a magnetic field B as shown. What is the direction of the force on the electron?

1) Out of the screen
2) Into the screen
3) In the direction of B
4) In the direction of v
What is the direction of the force on the electron?

Solution: \(\vec{F} = q \, \vec{v} \times \vec{B} \)

\(\vec{v} \times \vec{B} \) is out of screen by RH rule. But \(q \) is negative, so \(F \) is into the screen.

(1) Out of the screen. \hspace{1cm} (2) Into the screen.

(3) In the direction of \(B \). \hspace{1cm} (4) In the direction of \(v \).
REVIEW: Charge in Uniform Field

B is out of screen so F is toward center so ion moves in circle with constant speed.

Centripetal acceleration is $a = \frac{v^2}{r}$

$\therefore F = qvB = ma = \frac{mv^2}{r}$

So solving for r gives the radius of curvature of the path:

$r = \frac{mv}{qB}$
Q.28-4

An ion with charge $+e$ and mass M_1 follows the dashed path in given B field.

Another ion with charge $+e$, but a different mass M_2 enters the field with the same velocity as the first, and follows the blue path. How do the masses compare?

(1) $M_1 > M_2$ (2) $M_2 > M_1$ (3) Can’t say.
Two ions, same q, v.

M1 follows dashed path.

M2 follows blue path.

How do their masses compare?
Q.28-4

Two ions with equal charges and velocities follow the two curves shown.

\[r = \frac{mv}{qB} \]

\(M_1 \) follows the dashed, \(M_2 \) the blue path. How do the masses compare?

Blue radius is smaller so blue mass is smaller.

(1) \(M_1 > M_2 \) (2) \(M_2 > M_1 \) (3) Can’t say.
Field Due to a *Long Straight Wire*

Lines of B make circles around wire!
Field of a long straight wire

1. Direction is given by the right-hand rule!

2. Magnitude is \(B = \frac{\mu_0 i}{2\pi r} \)

3. New universal constant:
\[
\mu_0 = 4\pi \times 10^{-7} \text{ Tm} / \text{A}
\]
Example

What is the magnetic field at point \(P \)?

Direction: Out of the screen by right-hand rule.

Magnitude:

\[
B = \frac{\mu_0 i}{2\pi r} = \frac{4\pi \times 10^{-7} \times 3.0}{2\pi \times 0.20} = 3.0 \times 10^{-6} \ T
\]
Field Due to a Short Bit of Wire

Recall Coulomb: \(E \) is parallel to \(r \).

But as usual for magnetism, we find \(B \) is perpendicular to \(r \)!

\[
d\mathbf{B} \propto i \, d\mathbf{s} \times \mathbf{r}
\]

Another right-hand rule!
The Biot-Savart Law

\[d\vec{B} = \frac{\mu_0}{4\pi} \frac{id\vec{s} \times \vec{r}}{r^3} \]

- Field \(d\vec{B} \) is perpendicular to both \(ds \) and \(r \).
- Inverse square law like Coulomb’s Law.
- Universal constant:
 \[\mu_0 = 4\pi \times 10^{-7} \ Tm / A \]
Example

Field at the center of a circular loop of wire.

Direction: Into the screen, by the right-hand rule.

Magnitude: Must add up (integrate) all the little dB from all the little ds.

\[
B = \int dB = \frac{\mu_0}{4\pi} \frac{i}{r^2} \int ds = \frac{\mu_0}{4\pi} \frac{i}{r^2} 2\pi r = \frac{\mu_0 i}{2r}
\]
Ampere’s Law
\[\oint_C \vec{B} \cdot d\vec{s} = \mu_0 i_{\text{enc}} \]

- $C =$ Any closed path
- $i_{\text{enc}} =$ Net current linking C (*Right-hand rule*)
- $B =$ The total magnetic field
- $ds =$ A short step along the path

This is the third of Maxwell’s equations.
Field Due to a *Long Straight Wire*

1. Direction is given by the right-hand rule!

2. Magnitude is found by applying Ampere’s Law to a circular path of radius r:

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i$$

$$B \cdot \oint ds = B \cdot 2\pi r = \mu_0 i$$

$$B = \frac{\mu_0 i}{2\pi r}$$
Example: Field in Coaxial Cable

Cable perpendicular to screen
Central wire: i inward
Outer cylinder: i outward

(b) Field outside the cable?

\[
\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc}
\]

\[
B \cdot \oint ds = B \cdot 2\pi r = \mu_0 (i - i)
\]

$B = 0$

Outer conductor prevents field from escaping!
Example: Field in Coaxial Cable

Cable perpendicular to screen
Central wire: i inward
Outer cylinder: i outward

(a) Field between conductors?

$$\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 i_{enc}$$

$$B \cdot \oint ds = B \cdot 2\pi r = \mu_0 i$$

$$B = \frac{\mu_0 i}{2\pi r}$$

Just as if outer conductor did not exist!
Field Due to a Current Loop

Serway, College Physics, 5/e
Text Figure 19.28a,b

(a)

(b)
Magnetic Dipole Field

Serway, College Physics, 5/e
Text Figure 19.30a

Harcourt Brace & Company
Dipole Moment of a Current Loop

Definition: Magnetic dipole moment vector: $\vec{\mu}$

- Direction: RH rule
- Magnitude: $\mu = iA$

Analogous to electric dipole moment vector \vec{p}