

Review: Definition of Potential

• Potential is defined as potential energy per unit charge. Since change in potential energy is work done, this means

$$\Delta V = -\int E_x dx$$
 and $E_x = -\frac{dV}{dx}$ etc.

The potential difference between any two points is the work required to carry a unit positive test charge between those two points.

Review: Coulomb's Law

So we now have a *third form of Coulomb's Law:*

1. $F = kQq/r^2$

2.
$$E = kQ / r^2$$

3.
$$V = kQ/r$$

Review: Basics about Potentials

• U = qV
• V = kQ/r
• W_{AB} = q (V_B - V_A)

$$\Delta V = -\int E_x dx$$

$$E_x = -\frac{dV}{dx} \quad etc.$$

Q.23-3

If the uniformly charged sphere has radius R=2 cm and total charge Q = 24 nC, how much charge Q_{in} lies within r = 1 cm of the center?

- 1) 12 nC
- 2) 8 nC
- 3) 6 nC
- 4) 4 nC
- 5) 3 nC

By definition
$$\Delta V = -\int_{R}^{0} \vec{E} \cdot d\vec{r} = \int_{0}^{R} \vec{E} \, dr$$

But we already know $E = \frac{\rho r}{3\varepsilon_{0}}$
Therefore
 $\Delta V = \int_{0}^{R} \frac{\rho r}{3\varepsilon_{0}} dr = \frac{\rho}{3\varepsilon_{0}} \int_{0}^{R} r \, dr = \frac{\rho}{3\varepsilon_{0}} \frac{R^{2}}{2} = \frac{\rho R^{2}}{6\varepsilon_{0}}$

Suppose we have some given numbers: $R = 3 \ cm$ $\rho = 3 \times 10^{-6} \ C \ / m^3$ (So that $Q = \frac{4}{3} \pi R^3 \rho = 3.4 \times 10^{-10} \ C = 0.34 \ nC$) Then $\Delta V = \frac{\rho R^2}{6\varepsilon_0} = \frac{3 \times 10^{-6} \times (3 \times 10^{-2})^2}{6 \times 9 \times 10^{-12}} = 50 \ V$

Q.24-3	Using the same numbers, what is the potential at the surface of this sphere?
R = 3 cm	
$\rho = 3 \times 10$	$^{-6} C / m^{3}$
$Q = 3.4 \times 10^{-10}$	$10^{-10} C$
1) 250 2) 100	
3) 50	V
4) 25	V
5) 0	

A new unit of energy

- One <u>electron-volt</u> (eV) is the energy to move an electron between points with a potential difference of one volt.
- This is not an SI unit but is universally used in discussing processes involving electrons, atoms, nano-scale structures, etc.

$$U = aV$$

$$U = e \times V = (1 V)(e) = \underline{1 eV}$$

= (1 V) × (1.6 × 10⁻¹⁹ C) = $\underline{1.6 \times 10^{-16} J}$

So if V=1 V and a=e then:

A new unit of energy

$$1 eV = 1.6 \times 10^{-19} J$$

So in our previous example, where we have V=50 V and q=e then the work required to move an electron from the center to the surface is:

$$U = qV = (50 V)(e) = 50 eV$$

= (1.6×10⁻¹⁹ C)×(50 V) = 8×10⁻¹⁸ J

Much simpler to just give 50 eV as the answer.

More about units

•The SI unit for potential is the volt.

•The SI unit for electric field is N/C.

•But E = dV/dx so another unit for E could be volts/meter.

It is correct to say that the SI unit for E is V/m.

This is more commonly used in applications.

Be careful with SI units

Suppose we want to calculate the speed of this electron. We must first convert the energy from eV to SI units.

$$K = \frac{1}{2}mv^{2} = qV = 500 \ eV$$
$$= (500 \ eV) \times (1.6 \times 10^{-19} \ J/eV) = 8 \times 10^{-17} \ J$$
$$v = \sqrt{\frac{2K}{m}} = \sqrt{\frac{2 \times 8 \times 10^{-17} \ J}{9.1 \times 10^{-31} \ kg}} = 1.3 \times 10^{7} \ m/s$$

	High energies			
• In elementary-particle physics, high-energy particles beams have energies measured in	10 ³ eV 10 ⁶ eV 10 ⁹ eV			