Chapter 23: Gauss's Law

Homework:

- Read Chapter 23
- Questions 2, 5, 10
- Problems 1, 5, 32

Gauss's Law

- Gauss's Law is the first of the four <u>Maxwell Equations</u> which summarize all of electromagnetic theory.
- Gauss's Law gives us an <u>alternative</u> to Coulomb's Law for calculating the electric field due to a given distribution of charges.

Gauss's Law: The General Idea

The net number of electric field lines which leave any volume of space is proportional to the net electric charge in that volume.

Flux

The *flux* Φ of the *field* E through the *surface* S is **defined** as

The meaning of flux is just the number of field lines passing through the surface.

Best Statement of Gauss's Law

The outward flux of the electric field through any closed surface equals the net enclosed charge divided by ε_0 .

Gauss's Law: The Equation $\oint_{S} \vec{E} \cdot d\vec{A} = Q_{enc} / \varepsilon_{0}$

- S is any **closed** surface.
- Q_{enc} is the **net** charge **enclosed** within S.
- dA is an element of area on the surface of S.
 dA is in the direction of the outward normal.

$$\varepsilon_0 = 8.85 \times 10^{-12}$$
 SI units

Flux Examples

Assume two charges, +q and –q. Find fluxes through surfaces. Remember flux is negative if lines are entering closed surface.

$$\Phi_1 = +q/\epsilon_0$$

$$\Phi_2 = -q/\epsilon_0$$

$$\Phi_3 = 0$$

$$\Phi_4 = (q - q)/\epsilon_0 = 0$$

Another Flux Example

Must have *closed surface*, so let *S* be (net+circle). Then $Q_{enc} = 0$ so Gauss's law says $\Phi_S = 0$.

But
$$\Phi_{circle} = \pi a^2 E$$

$$\therefore \quad \Phi_{net} = -\pi \ a^2 E$$

$Gauss \Rightarrow Coulomb$

Gaussian

surface

 \vec{E}

Given a point charge, draw a concentric sphere and apply Gauss's Law:

$$\vec{E} = E(r)\hat{r}$$
$$\Phi = \oint \vec{E} \cdot d\vec{A} = E(r) 4\pi r^2$$

Gauss $\Rightarrow \Phi = q / \mathcal{E}_0$

 $\therefore \quad E(r) = q / (4\pi r^2 \varepsilon_0) = kq / r^2$

If a vector field v passes through an area A at an angle θ , what is the name for the product $\vec{v} \cdot \vec{A} = vA\cos\theta$?

Q.23-1 What is the name for the product $\vec{v} \cdot \vec{A} = vA\cos\theta$?

- 1. Curl
- 2. Energy
- 3. Flux
- 4. Gradient

Q.23-1

$\Phi = \vec{v} \cdot \vec{A} = vA\cos\theta$

= *flux* from the Latin "to flow".

(1) curl (2) energy (3) flux (4) gradient

Two charges Q_1 and Q_2 are inside a <u>closed cubical box</u> of side *a*. What is the <u>net outward flux</u> through the box?

2

(1)
$$\Phi = 0$$

(2) $\Phi = (Q_1 + Q_2) / \varepsilon_0$
(3) $\Phi = k(Q_1 + Q_2) / a$
(4) $\Phi = \frac{Q_1 + Q_2}{4\pi\varepsilon_0 a^2}$
(5) $\Phi = \frac{Q_1 - Q_2}{4\pi\varepsilon_0 a^2}$

Q.23-2

Q.23-2 Two charges Q_1 and Q_2 are inside a <u>closed</u> <u>cubical box</u> of side *a*. What is the <u>net</u> <u>outward flux</u> through the box?

1.
$$\Phi = 0$$

2. $\Phi = (Q_1 + Q_2) / \varepsilon_0$
3. $\Phi = k(Q_1 + Q_2) / a^2$
4. $\Phi = \frac{Q_1 + Q_2}{4\pi\varepsilon_0 a^2}$
5. $\Phi = \frac{Q_1 - Q_2}{4\pi\varepsilon_0 a^2}$

Q.32-2

Two charges Q_1 and Q_2 are inside a <u>closed cubical box</u> of side *a*. What is the <u>net outward flux</u> through the box?

 $\Phi = 0$ $\Phi = (Q_1 + Q_2) / \varepsilon_0$ $\Phi = k(Q_1 + Q_2)/a^2$ $\Phi = \frac{Q_1 + Q_2}{4\pi\varepsilon_0 a^2}$ $\Phi = \frac{Q_1 - Q_2}{4\pi\varepsilon_0 a^2}$

Gauss:

The outward flux of the electric field through any closed surface equals the net enclosed charge divided by ε_0 .

Application of Gauss's Law

- We want to compute the electric field at the surface of a charged metal object.
- This gives a good example of the application of Gauss's Law.
- First we establish some facts about good conductors.
- Then we can get a neat useful result:

$$E = \sigma / \varepsilon_0$$

Fields in Good Conductors

Fact: In a steady state the electric field inside a good conductor must be zero.

Why? If there were a field, charges would move. Charges will move around until they find the arrangement that makes the electric field zero in the interior.

Charges in Good Conductors

- **Fact:** In a steady state, any net charge on a good conductor must be entirely on the surface.
- *Why?* If there were a charge in the interior, then by Gauss's Law there would be a field in the interior, which we know cannot be true.

Field at the Surface of a Conductor

(*b*)

- Construct closed gaussian surface, sides perpendicular to metal surface, face area = A.
- Flux through left face is zero because E=0.
- Field is perpendicular to surface or charges would move, therefore flux through sides is 0.
- So net outward flux is EA.

Field at the Surface of a Conductor

- Let σ stand for the surface charge density (C/m²)
- Then $Q_{enc} = \sigma A$.
- Now Gauss's Law gives us

$$\Phi = Q_{enc} / \varepsilon_0$$

$$EA = \sigma A / \varepsilon_0$$

$$E = \sigma / \varepsilon_0$$

Large Sheet of Charge

 σ = charge /area = surface charge density

Summary for different dimensions

 \bigcirc

Point charge, d=0

Line charge, d=1

$$E \propto \frac{1}{r^{2-d}}$$

 $\Phi = 4\pi r^2 E = Q / \varepsilon_0$ $E = Q / (4\pi\varepsilon_0 r^2)$

$$\Phi = 2\pi \ r l E = \lambda \ l \ / \ \varepsilon_0$$
$$E = \lambda \ / (2\pi\varepsilon_0 r)$$

Surface charge, d=2

$$\Phi = 2AE = \sigma A / \varepsilon_0$$
$$E = \sigma / (2\varepsilon_0)$$

Potential

Outline for today

- Potential as energy per unit charge.
- Third form of Coulomb's Law.
- Relations between field and potential.

Potential Energy per Unit Charge

Just as the *field* is defined as *force* per unit charge, the *potential* is defined as *potential energy* per unit charge:

$$\vec{F} = q\vec{E}$$
 and $U = qV$

The SI unit for potential is the <u>volt</u>. (1V=1J/C)

- Potential is often casually called "voltage".
- As with potential energy, it is really the *potential difference* which is important.

Potential Energy Difference

If a charge q is originally at point A, and we then move it to point B, the *potential energy* will increase by the amount of work we have done in carrying the charge from A to B $\mathcal{P}_{B} \quad dW = \vec{F}_{ext} \cdot d\vec{s}$ $d\vec{s}$ $U_B - U_A = W_{AB} = \int \vec{F}_{ext} \cdot d\vec{s}$

Potential Difference

The *potential difference* between point A and point B is this work *per unit charge*.

$$W_{AB} = q V_{AB} = \int_{A}^{B} \vec{F}_{ext} \cdot d\vec{s} = -\int_{A}^{B} q \vec{E} \cdot d\vec{s}$$

$$\therefore \quad V_{AB} = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s}$$

D

Potential Relative to Infinity

- We have defined potential difference ΔV . But to have a value for V itself we need to decide on a zero point.
- In circuits, we define the *earth* to have V=0, and often *ground* the circuit.
- In electrostatics we normally define V=0 far away from all charges. Then at point P we write V(P) to mean V(P) V(∞).

Potential at a point

The potential at point P is the work required to bring a one-coulomb test charge from far away to the point P.

Example 1: Uniform Field

$$\Delta V = -\int E dx = -E d$$
$$V(0) - V(d) = E d$$

Work required to push a 1-coulomb test charge against the field from x=d to x=0.

"Work = force X distance"

Q.24-1 Suppose, using an xyz coordinate system, in some region of space, we find the electric potential is $V(x) = Ax^2$ where A is a constant.

What is the x-component of the electric field in this region?

A.
$$E_x = Ax$$

B.
$$E_x = Ax^2$$

$$\mathbf{C.} \qquad E_x = -2Ax$$

Q. 24-1 Given $V(x) = Ax^2$

where A is has the constant value $A = 25 V / m^2$.

What is the x-component of the electric field?

Solution:

$$E_x = -\frac{d}{dx}V = -A\frac{dx^2}{dx} = -2Ax$$

(1)
$$E_x = Ax$$
 (2) $E_x = Ax^2$

$$(3) E_x = -2Ax$$

Furthermore

What are the y and z components of the electric field in the previous question?

$$E_{y} = -\frac{d}{dy}V = -A\frac{dx^{2}}{dy} = 0$$

and also
$$E_z = -\frac{d}{dz}V = 0$$

Case of a Single Point Charge

$$V(P) = \int_{P}^{\infty} \vec{E} \cdot d\vec{s} = \int_{R}^{\infty} E(r) dr$$

$$V(R) = \int_{R}^{\infty} E(r) dr = k Q \int_{R}^{\infty} \frac{dr}{r^2}$$

$$= \left[-\frac{kQ}{r} \right]_{R}^{\infty} = -kQ \left[\frac{1}{\infty} - \frac{1}{R} \right] = \frac{kQ}{R}$$

Coulomb's Law for V

So we now have a *third form of Coulomb's Law:*

1.
$$F = kQq/r^2$$

2. $E = kQ/r^2$
3. $V = kQ/r$

Potential is not a Vector

Adding forces and fields means *adding vectors:* finding the *resultant vector*.

Adding potentials means *adding numbers*, and taking account of their signs. But it is much simpler than adding vectors.

Thus the third form of Coulomb's Law is the simplest!

Example 1: Adding Potentials

$$V(P) = V_1 + V_2 = \frac{kQ}{a} + \left(-\frac{kQ}{a}\right) = 0$$

Note that the *field* at point P is *not* zero!

 $(1)+\frac{kQ}{D}$

Uniformly charged rod with charge of –Q bent into arc of 120° with radius R.

(4)

What is V(P), the electric potential at the center?

 $(2) - \frac{kQ}{R} \quad (3) \frac{kQ}{2R}$

Q.24-2 Uniformly charged rod with charge of –Q bent into arc of 120° with radius R.

What is V(P), the electric potential at the center?

- A. +kQ/R
- B. -kQ/R
- C. +kQ/2R
- D. -kQ/2R

What is V(P), the electric potential at the center?

Solution: All bits of charge are at the same distance from P. Thus

$$V = \int \frac{k dq}{r} = \frac{k}{R} \int dq = \frac{k}{R} \left(-Q\right)$$

$$(1) + \frac{kQ}{R} \left[(2) - \frac{kQ}{R}\right] \left(3) \frac{kQ}{2R} \left(4\right) - \frac{kQ}{2R}\right]$$

Potential Energy of Some Charges

The potential energy U of a group of charges is the work W required to assemble the group, bringing each charge in from infinity.

We can show that the result is $U = U_{12} + U_{13} + U_{23} + \cdots$

Where the potential energy of each *pair* is of the form II - ka a / k

$$U_{12} = kq_1q_2 / r_{12}$$

Binding Energy

If the total potential energy *U* of a group of charges is *negative* that means we have to do work to pull them apart. The magnitude of this negative potential energy is called the *binding energy*.

Examples:

- Removing an electron from an atom to form a positive ion.
- Removing a space probe from earth's gravitational field.

Example 3: Charged Ring

- In Ch. 22 the *E* field of a charged ring is calculated.
- Here we compute V first and then use it to get E.
- Get *V* at *P* on axis of circular ring, a distance *z* from center:

$$V(P) = \int \frac{kdQ}{r}$$

Example 3 Continued

Key point: All bits of charge are the same distance from point P!

$$V(P) = \int \frac{kdQ}{r} = \frac{k}{r} \int dQ = \frac{kQ}{\sqrt{R^2 + z^2}}$$

Note we have no struggling with angles or adding many little vectors as we do if we compute *E*.

Using V to get E

Now that we have V on the axis we can get E_z on the axis by differentiation: $E_z = -\frac{dV}{dz}$

This is slightly messy, but we just need to remember that $\frac{df^n}{df} = nf^{n-1}\frac{df}{df}$

$$\frac{dz}{dz} = nf^{n-1}\frac{dz}{dz}$$

where here $f^n = (R^2 + z^2)^{-1/2}$

So finally we get
$$E(z) = -\frac{d}{dz} \frac{kQ}{\sqrt{R^2 + z^2}} = \frac{kQz}{(R^2 + z^2)^{3/2}}$$

which is exactly the result the textbook gets in Ch. 22 by direct integration of the field.

And also:

$$E_{y} = -\frac{d}{dy}V = -A\frac{dx^{2}}{dy} = 0$$
$$E_{z} = -\frac{d}{dz}V = 0$$

Furthermore

What are the y and z components of the electric field in the previous question?

$$E_{y} = -\frac{d}{dy}V = -A\frac{dx^{2}}{dy} = 0$$

and also
$$E_z = -\frac{d}{dz}V = 0$$

Summary of Basics

- $\mathbf{U} = \mathbf{q}\mathbf{V}$
- V = kQ/r

•
$$W_{AB} = q (V_B - V_A)$$

$$\Delta V = -\int E_x dx$$
$$E_x = -\frac{dV}{dx} \quad etc.$$