
Chapter 23: Gauss’s Law

Homework:

• Read Chapter 23

• Questions 2, 5, 10

• Problems  1, 5, 32



Gauss’s Law

• Gauss’s Law is the first of the four 

Maxwell Equations which summarize 

all of electromagnetic theory.

• Gauss’s Law gives us an alternative to 

Coulomb’s Law for calculating the 

electric field due to a given distribution 

of charges.



Gauss’s Law: The General Idea

The net number of electric field lines which 

leave any volume of space is proportional to 

the net electric charge in that volume.

volume V

E lines leaving V

E lines entering V



Flux

∫ ⋅=Φ
S

AdE
rr

The flux Φ of the field E through 

the surface S is defined as

The meaning of flux is just the number of

field lines passing through the surface.



Best Statement of Gauss’s Law

The outward flux of the 

electric field through any 

closed surface equals the net 

enclosed charge divided by ε0.



Gauss’s Law: The Equation

∫∫∫∫ ====⋅⋅⋅⋅
S

encQAdE 0/εεεε
rr

• S is any closed surface.

• Qenc is the net charge enclosed within S.

• dA is an element of area on the surface of S.

• dA is in the direction of the outward normal.
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Flux Examples

Assume two charges, +q and –q.

Find fluxes through surfaces.

Remember flux is negative if lines 

are entering closed surface.

Φ1 = +q/ε0

Φ2 = –q/ε0

Φ3 =  0

Φ4 = (q –q )/ε0 = 0



Another Flux Example

Given uniform field E, find flux through net.



Must have closed surface, so let S be (net+circle).  

Then Qenc = 0 so Gauss’s law says ΦS = 0.

EaBut circle

2π=Φ

Eanet

2π−=Φ∴



Gauss ⇒⇒⇒⇒ Coulomb

Given a point charge, 

draw a concentric sphere 

and apply Gauss’s Law:
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Q.23-1

If a vector field v passes through an area A at an 

angle θ, what is the name for the product

?cosθθθθvAAv ====⋅⋅⋅⋅
rr

(1) curl    (2) energy    (3) flux    (4) gradient



Q.23-1 What is the name for the product

?cosθθθθvAAv ====⋅⋅⋅⋅
rr

1. Curl

2. Energy

3. Flux

4. Gradient



Q.23-1 θθθθcosvAAv ====⋅⋅⋅⋅====ΦΦΦΦ
rr

(1) curl    (2) energy    (3) flux    (4) gradient

= flux from the Latin “to flow”.



Q.23-2
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Two charges Q1 and Q2 are inside 

a closed cubical box of side a.  

What is the net outward flux

through the box?



Q.23-2
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Two charges Q1 and Q2 are inside a closed 

cubical box of side a.  What is the net 

outward flux through the box?



Q.32-2

The outward flux of the 

electric field through any 

closed surface equals the net 

enclosed charge divided by 

ε0.

Gauss:

Two charges Q1 and Q2 are inside 

a closed cubical box of side a.  

What is the net outward flux

through the box?
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Application of Gauss’s Law

• We want to compute the electric field at 

the surface of a charged metal object.

• This gives a good example of the 

application of Gauss’s Law.

• First we establish some facts about good 

conductors.

• Then we can get a neat useful result:

0/εεεεσσσσ====E



Fields in Good Conductors

Fact: In a steady state the electric field inside a 

good conductor must be zero.

Why? If there were a field, charges would move.  

Charges will move around until they find the 

arrangement that makes the electric field zero in 

the interior.



Charges in Good Conductors

Fact: In a steady state, any net charge on a good 

conductor must be entirely on the surface.

Why? If there were a charge in the interior, then by 

Gauss’s Law there would be a field in the interior, 

which we know cannot be true.



Field at the Surface of a Conductor

• Flux through left face is zero 

because E=0.

• Construct closed gaussian 

surface, sides perpendicular to 

metal surface, face area = A.

• Field is perpendicular to 

surface or charges would 

move, therefore flux through 

sides is 0.

• So net outward flux is EA.



Field at the Surface of a Conductor

• Then Qenc = σ A.

• Let σ stand for the surface 

charge density (C/m2)

• Now Gauss’s Law gives us
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Large Sheet of Charge

Q A AQ σ=

σ = charge /area = surface charge density
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Long Line of Charge
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Potential



Outline for today

• Potential as energy per unit charge.

• Third form of Coulomb’s Law.

• Relations between field and potential.



Potential Energy per Unit Charge

The SI unit for potential is the volt. (1V=1J/C)

• Potential is often casually called “voltage”.

• As with potential energy, it is really the 
potential difference which is important.

qVUandEqF ========
rr

Just as the field is defined as force per unit 

charge, the potential is defined as potential 

energy per unit charge:



Potential Energy Difference

If a charge q is originally at point A, and we 
then move it to point B, the potential 
energy will increase by the amount of work 
we have done in carrying the charge from A 
to B.

∫∫∫∫ ⋅⋅⋅⋅========−−−−
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Potential Difference

The potential difference between point A and 

point B is this work per unit charge.
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Relation between E and V

x

E
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Potential Relative to Infinity

• We have defined potential difference ∆V.  

But to have a value for V itself we need to 

decide on a zero point.

• In circuits, we define the earth to have 

V=0, and often ground the circuit.

• In electrostatics we normally define V=0 

far away from all charges.  Then at point P 

we write V(P) to mean V(P) - V(∞∞∞∞).



Potential at a point 

The potential at point P is the work 

required to bring a one-coulomb test 

charge from far away to the point P.
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Example 1: Uniform Field

x
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Work required to push a 

1-coulomb test charge 

against the field from 

x=d to x=0.

“Work = force X distance”



Q.24-1 Suppose, using an xyz coordinate 

system, in some region of space, 

we find the electric potential is
2

)( AxxV ==== where A is a constant. 

What is the x-component of the 

electric field in this region?

AxEx 2−−−−====

2
AxEx ====

AxEx ====A.

B.

C.



Q. 24-1 Given
2

)( AxxV ====
where A is has the constant value ./25

2
mVA ====

What is the x-component of the electric field?

AxEAxEAxE xxx 2)3()2()1(
2 −−−−============

Solution:
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Furthermore

What are the y and z components of the 

electric field in the previous question?

0
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Case of a Single Point Charge
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Coulomb’s Law for V

So we now have a third form of Coulomb’s Law:
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Potential is not a Vector

Adding forces and fields means adding vectors:  

finding the resultant vector.

Adding potentials means adding numbers, and 

taking account of their signs.  But it is much 

simpler than adding vectors.

Thus the third form of Coulomb’s Law is the simplest!



Example 1: Adding Potentials

0)( 21 ====
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Note that the field at point P is not zero! 
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Q. 24-2 Uniformly charged rod with 

charge of –Q bent into arc of 120°

with radius R.

What is V(P), the electric 

potential at the center?
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Q.24-2

A. +kQ/R

B. -kQ/R

C. +kQ/2R

D. -kQ/2R

Uniformly charged rod with charge 

of –Q bent into arc of 120° with 

radius R.

What is V(P), the electric 

potential at the center?



Q. 24-2
What is V(P), the electric 

potential at the center?

Solution: All bits of charge are 

at the same distance from P.  

Thus
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Potential Energy of Some Charges

The potential energy U of a group 

of charges is the work W required 

to assemble the group, bringing 

each charge in from infinity.

We can show that the result is

122112 / rqkqU ====

L++++++++++++==== 231312 UUUU

Where the potential energy of each pair is 

of the form



Binding Energy

If the total potential energy U of a group of 

charges is negative that means we have to do 

work to pull them apart.  The magnitude of 

this negative potential energy is called the 

binding energy.

Examples:

• Removing an electron from an atom to form a positive ion.

• Removing a space probe from earth’s gravitational field.



Example 3:  Charged Ring

• In Ch. 22 the E field of a 

charged ring is calculated.

• Here we compute V first and 

then use it to get E.

• Get V at P on axis of circular 

ring, a distance z from center:

∫=
r

kdQ
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Example 3 Continued

Key point: All bits of charge are 

the same distance from point P!

∫∫∫∫∫∫∫∫
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Note we have no struggling with angles or 

adding many little vectors as we do if we 

compute E.



Using V to get E

Now that we have V on the axis we can get Ez
on the axis by differentiation:

dz

dV
Ez −−−−====

This is slightly messy, but we just need to 

remember that 
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which is exactly the result the textbook gets in 

Ch. 22 by direct integration of the field.

So finally we get

And also:
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Furthermore

What are the y and z components of the 

electric field in the previous question?
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Summary of Basics

• U = qV

• V = kQ/r

• WAB = q ( VB – VA )
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