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We present a theory of second phase conductive filaments in phase transformable systems;

applications include threshold switches, phase change memory, resistive memory, and shunting in thin

film structures. We show that the average filament parameters can be described thermodynamically. In

agreement with the published data, the predicted filament current-voltage characteristics exhibit

negative differential resistance that vanishes at high currents where the current density becomes a bulk

material property. Our description is extendible to filament transients and allows for efficient

numerical simulation. VC 2011 American Institute of Physics. [doi:10.1063/1.3592983]

I. INTRODUCTION

A general observation common to multiple modern tech-

nologies is that thin-film structures can drastically decrease

their transverse electrical resistance by forming second phase

conductive filaments (SPCFs) in response to electric bias.

These SPCFs represent cylinder shaped inclusions that are

structurally and/or chemically different from the host mate-

rial, such as, e.g., crystalline SPCFs that punch through insu-

lating amorphous hosts in chalcogenide phase change

memory, metallic filaments in insulating films of resistive

memory, or defect constituted SPCFs through thin film insu-

lating oxides. SPCFs can be either stable, as in phase change

memory and dielectric oxides after hard breakdown, or unsta-

ble (disappearing after the bias is removed or proper anneal-

ing), as in threshold switches1 and some thin film structures.

From a practical perspective, SPCFs can cause detrimental

shunting and loss of functionality in devices such as thin-film

photovoltaics and thin oxides of electronic devices.2,3 On the

other hand, in implementations such as threshold switches,4,5

phase change memory,6 and resistive memory,7 SPCFs facili-

tate information storage and logic operations.

Despite a long history of observations, a theoretical

framework for SPCFs does not exist. Here, we introduce a

general thermodynamic theory that describes SPCFs coupled

with an external circuit (sometimes referred to as global

coupling) and predicts the SPCF radius as a function of the

electric current and material parameters, as well as the corre-

sponding current-voltage (IV) characteristics. Our theory is

conceptually applicable at any size scale (to within the ther-

modynamic approximation) and over the full IV range. A fi-

nite element numerical simulation is employed to support our

analytical results, which are found to be in excellent agree-

ment with the data.

For specificity we consider the archetypal SPCF system

of chalcogenide glass threshold switches wherein reversible

switching takes place between highly resistive (amorphous)

and conductive (SPCF) phases. They have recently regained

interest in connection with 3D stackable phase change mem-

ory.5 The empirical fact that the SPCF radius increases with

current as r / I1=2 has been known4,8 since the seminal work

by Ovshinsky,1 yet it still lacks a theoretical description. An

early approach based on the principle of least entropy pro-

duction9 did not result in verifiable predictions; its validity

remains questionable10 and avoidance of it leads to different

results, as shown here.

To avoid any misunderstanding, it may be worth noting

that our theory here is not related to the well developed

theory of current filamentation in bistable semiconductors

(see, e.g., Refs. 11–14, and references therein). Several im-

portant differences can be pointed out. The latter theories

proceed from the premise of a spatiotemporal differential

equation for a distributed characteristic (charge carrier con-

centration, temperature, etc.) complimented with the current

voltage characteristic of the entire system that is taken to be

multivalued (S-shaped, etc.). They do not include any con-

cepts of phase transformations, such as the change in chemi-

cal potential and interfacial energy. These theories then

show the conditions under which, near equilibrium, the fila-

ment remains stable, or decaying, or oscillating, or even trav-

eling in lateral directions. The corresponding results are

typically limited to within close proximity of equilibrium.

On the contrary, our theory presented here does not imply

any global current voltage characteristics nor does it postulate

any spatiotemporal differential equations. Instead, we proceed

from the classical phase transition concepts, explicitly includ-

ing the difference in chemical potentials and interfacial energy

between the two phases. Based on the known approaches to

nucleation kinetics, our theory then provides an approximate

equation describing the filament evolution in terms of free

energy that includes the contributions from phase transforma-

tions, Joule heat, and electrostatics. This approach generates

results applicable in the full range of filament and host mate-

rial parameters, including far from equilibrium, predicting the

current-voltage characteristic of the filament as well as the

relation between its radius and the current. While approximate

(neglecting fluctuations between filaments), our results are

verified by substituting specific material parameters and com-

paring to the published experimental data; the agreement is

excellent without adjusting parameters.

This paper is organized as follows. Section II describes

our general approach where the Fokker–Planck equation isa)Electronic mail: Marco.Nardone@utoledo.edu.
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used to derive the equation for evolution of the filament av-

erage parameters. In Sec. III a simple system with flat elec-

trodes is introduced as a model that adequately describes the

free energy. The analysis of steady state filaments is pre-

sented in Sec. IV. In Sec. V we discuss the numerical values

of filament parameters for a specific case of SPCFs in chal-

cogenide switches. There, we also describe our developed

numerical analysis of switching phenomenon implemented

with COMSOL software. Section VI briefly introduces the

results of a linear stability analysis that provides the condi-

tions under which the filament will grow, decay, or oscillate.

Our conclusions are summarized in Sec. VII.

II. GENERAL FORMALISM

Whether electronic15,16 or crystalline,17 or otherwise dif-

ferent from the host material, an SPCF represents a domain of

different phase, thus calling upon the analysis of phase trans-

formations. Our conservative approach avoids the principle of

least entropy production starting instead with the kinetic Fok-

ker–Planck equation, the applicability of which to phase trans-

formations, particularly to nucleation phenomena (according

to Zeldovich theory), is well established.18 Following that

approach (see, e.g., p. 428 in Ref. 18) the Fokker–Planck

equation in the space of cylinder radii r takes the form

@f

@t
¼ � @s

@r
; s � �B

@f

@r
þ Af ¼ �Bf0

@

@r

f

f0

� �
: (1)

Here, f is the distribution function so that f ðrÞdr gives the

concentration of filaments in the interval ðr; r þ drÞ; s is the

flux in radii space (s�1 cm�3). The “filament radius diffusion

coefficient” B can be estimated as �a2 expð�Wa=kTÞ where

� is the characteristic atomic frequency (�1013 s�1), a is the

characteristic interatomic distance, Wa is the kinetic phase

transformation barrier, k is Boltzmann’s constant, and T is

the temperature. A is connected with B by a relationship

which follows from the fact that s¼ 0 for the equilibrium

distribution f0ðrÞ / exp½�FðrÞ=kT�, where F is the free

energy.

We note that the concept of free energy F that appears

with the equilibrium distribution f0 is not compromised by the

fact that electric current flows through the SPCFs, since that

current is fixed by the external circuit and serves only as a

temperature source. Hence, F describes the free energy of the

SPCFs in an insulating host parametrically dependent on the

electric current. In other words, ours is not a case of equilib-

rium thermodynamics used to describe a dissipative system.

Many similar examples can be conceived where a system

remains nondissipative in spite of the temperature being main-

tained by an extraneous source of current Joule heat.

Two boundary conditions to Eq. (1) are imposed as fol-

lows. The boundary condition f ðr ¼ 0Þ ¼ 0 reflects the fact

that very thin filaments cannot exist due to limitations such as

loss of conductivity or mechanical instability (extraneous to

the present model). Another condition, f ðr ¼ 1Þ ¼ 0,

implies that only finite radii are achievable over finite times t.
Using the right-hand-side expression for s, multiplying

Eq. (1) by r, integrating from 0 to 1 by parts, and noting

that
Ð

frdr ¼ hri, yields @hri=@t ¼ h@F=@ri (angle brackets

denote averages). We then approximate hFi ¼ FðhriÞ and

h@F=@ri ¼ @hFi=@hri, thereby neglecting fluctuations in the

ensemble of nominally identical filaments. Omitting for

brevity the angle brackets, one finally obtains

@r

@t
¼ �b

@F

@r
with b ¼ B

kT
: (2)

This equation which expresses the average evolution of

SPCFs cylinder radius has the standard meaning of a relation

between the (growth) velocity and the (thermodynamic)

force �@F=@r, with the mobility b and the diffusion coeffi-

cient B obeying the Einstein relation.

In what follows we consider mostly the steady state case

@r=@t ¼ 0, which, according to Eq. (2), takes place when the

F is a minimum (obviously different from the condition of

least entropy production).9 However, in principle, Eq. (2) is

capable of describing various transients; this will be illus-

trated in Sec. VI.

III. FLAT ELECTRODE MODEL

To analytically present the free energy we consider a

model in Fig. 1 based on a flat plate capacitor of area A and

thickness h containing a cylindrical SPCF of radius r. In

what follows we will assume the characteristic filament

dimensions well above the screening length, thereby neglect-

ing possible effects due to electric charge redistribution

around the SPCFs. Including these effects would result in

additional terms to the free energy, adding mathematical

complexity while not changing the approach of this work.

With the above in mind, the major part of the free

energy is given by

F ¼ cdTpr2hþ CU2

2
þ 2prhrþ pr2hl: (3)

Here, c is the specific heat of the SPCFs, dT is the current de-

pendent temperature change, U is the voltage across the ca-

pacitor, C ¼ eA=4ph, e is the dielectric permittivity, r is the

surface energy, and l is the change in chemical potential

between the two phases. The first term in Eq. (3) represents

the thermal contribution, the second is the electrostatic

energy, and the last two correspond to the phase

transformation.

For the remainder of this analysis we specify the free

energy to the case of SPCFs radii r > h because: (1) pub-

lished experimental results are available; (2) SPCFs

FIG. 1. (Color online) Analytical model components with (a) circuit sche-

matic showing source voltage V, load resistance RL, capacitance C, and fila-

ment resistance R and (b) flat-plate capacitor of height h, and filament of

radius r carrying the current I.
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dimensions correspond to the above assumed largeness com-

pared to the screening length; and (3) the typical values of

the parameters enable one to neglect the second and the third

terms in Eq. (5), which allows analytical solutions. In the

case of r > h, the parameters in Eq. (3) are

U ¼ VR

Rþ RL
; R ¼ qh

pr2
; dT ¼ I2h2q

8p2jcr4
; (4)

where V is the source voltage, RL is the load resistance, I is

the current, R and q are the filament resistance and resistiv-

ity, respectively, and j is the thermal diffusivity, taken to be

the same for the filament and host materials. The expression

for dT follows that of the analysis in Ref. 8.

Substituting Eqs. (4), the free energy becomes

F ¼ 3Wh

2r0

bx2

ð1þ Hx2Þ2
þ c

ð1þ Hx2Þ2
þ xþ x2

( )
; (5)

where x � r=r0 and we have introduced the dimensionless

parameters

b ¼ pr3
0V2

12Wjq
; c ¼ r0

h

CV2

3W
; H ¼ RLpr2

0

qh
: (6)

Here the characteristic energy and length

W ¼ 16pr3=3l2 and r0 ¼ 2r=l: (7)

would have the physical meaning of nucleation barrier and

radius in classical nucleation theory (in which l is negative

and jlj is used instead). Assuming r and jlj to be of the

same order of magnitude as for crystal nucleation in chalco-

genide glasses, one can use the corresponding estimates19

W� 2 eV and r0 � 3 nm.

IV. STEADY STATE FILAMENT

The free energy of Eq. (5) as a function of filament ra-

dius for various source voltages is illustrated in Fig. 2(a).

The curves indicate that the filament can exist in a long-lived

metastable state at x ¼ xf [i.e., with the right minimum shal-

lower than the left one at Fðx ¼ 0Þ]. It becomes stable (i.e.,

the right minimum energy negative) at relatively high vol-

tages, V > ðh2=CRLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Wq=pr3

0j
q

. On the other hand, finite

radius filaments become unstable (i.e., the right minimum

disappears) at source voltages below

V0 ¼ 18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wjq=pr3

0

q
: (8)

V0 is defined by the conditions @F=@r ¼ @2F=@r2 ¼ 0 and is

presented by the curve labeled 0.3 V in Fig. 2(a).

At V ¼ V0, the steady state SPCF radius takes on its

minimum value,

rmin ¼ r0

ffiffiffiffiffiffiffiffiffi
2=H

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qh=pRL

p
:

The related filament resistance is a maximum, Rmax ¼ qh=
pr2

min ¼ RL=2. The characteristic holding current, Ih, (below

which the SPCF disappears) can be defined as the current

attained at the minimum source voltage V ¼ V0 [see the cir-

cuit in Fig. 1(a)],

Ih ¼ V0=ðRmax þ RLÞ ¼ 2V0=3RL: (9)

Along the same lines, the holding voltage is given by

Vh ¼ IhRmax, which leads to, Vh ¼ V0=3 (Vh is the voltage

across the bulk of the filament and should not be confused

with the applied source voltage V0).

The metastable filament is predicted to be extremely

long-lived at source voltages just slightly above V0. Indeed,

as seen from Fig. 2(a), the activation barrier separating the

metastable minimum can be as high as WB � 108 eV. More

quantitatively, close to V0 the shape of the free energy is

described by the expansion

dF ¼ 1

2!

@2F

@x@V
jV0;xmin

dxdV þ 1

3!

@3F

@x3
jV0;xmin

ðdxÞ3;

where xmin ¼ rmin=r0, dx ¼ x� xmin, and dV ¼ V � V0

yielding

r ¼ rmin 1þ

ffiffiffiffiffiffiffiffi
dV

4V0

s !
; WB ¼

4hW

r0H

dV

V0

� �3=2

: (10)

The large barrier values are due to a large number of par-

ticles constituting the filament: h=Hr0 � hr2
min=r3

0 � 1.

As illustrated in Fig. 2(b), the metastable nature of a

steady state SPCF does not appear with the filament immedi-

ately upon creation [i.e., when the thermal contribution has

not yet taken effect and the first term is excluded from

Eqs. (3) and (5)]. At

V > Vc ¼
h

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Wq

2pCRLr0

r
; (11)

the stability of the newly created filament is maintained

solely by the field. While that interpretation implies a thresh-

old voltage, it is quantitatively limited by the fact that the

present model considers filament creation and disappearance

in one step processes, neglecting the possibility of filament

nucleation.21

Beyond the critical region of voltage close to V0, the fil-

ament radius becomes proportional to
ffiffi
I
p

,

FIG. 2. (Color online) (a) Typical free energy vs filament radius x ¼ r=r0 at

various source voltages V [from Eq. (5)]. The steady state radius is xf and

SPCFs are unstable at V < V0. (b) Free energy of a filament as created (ther-

mal contribution neglected) and in the steady state. Arrows show how the

energy minimum moves to the right and becomes metastable, separated by a

barrier from the state without the filament.
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r ¼ r0

qh2

12pjWr0

� �1=4 ffiffi
I
p

when I � Ih; (12)

consistent with the above mentioned experimental observa-

tions1,8 (see Fig. 3).

Equation (12) predicts the often observed nearly vertical

current voltage characteristic where the device voltage,

Vd ¼ IR / I=r2, remains constant. The value of this constant

voltage at high current, I � Ih, is given by

Vh1 ¼ V0=33=2 ¼ Vh=
ffiffiffi
3
p

:

The inequality Vh1 < Vh implies a “knee” in IV characteris-

tic and a regime of negative differential resistance (NDR), as

shown in Fig. 4(a).

The reason for the apparently infinite differential conduc-

tivity dI=dV !1 at V ! Vh1 is that, according to Eq. (12),

the SPCF automatically adjusts its radius to maintain a con-

stant current density

J ¼ I

pr2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12jW

pqr3
0h2

s
: (13)

The latter current density is a bulk material property and is

independent of current. This fact has been known empirically

for more than four decades.1 When the SPCF grows to the

device size, saturation is achieved and the current density

increases linearly with current [see Fig. 4(b)].

V. NUMERICAL MODELING

For the typical parameter values q � 0:1 X cm,

j � 10�3 cm2 s�1, h � 3000 nm, RL � 100 X, e � 10, and

A � 1010 nm2,1,4,8,20 the numerical estimates for the above

derived SPCF holding current Ih � 1 mA and current density

J � 104 A/cm2 are in excellent agreement with the data,8

without adjusting parameters. On the other hand, the pre-

dicted holding voltage Vh � 0:3 V is considerably lower

than the measured Vh � 1 V.

The latter discrepancy is expected since our model here

does not consider blocking electrodes8,16 that are known to

add a current-independent contribution to the voltage across

device.1,4 The physics of such electrodes remains poorly

understood; the consensus is that they operate in a fashion of

Zener-type diode, possibly due to tunneling through the

Schottky type interfacial barrier.22 The corresponding theory

is not very closely related to the subject of this work and will

be presented elsewhere. Here, we limit our analysis to

including such electrode action on empirical grounds.

To complement our analytical work, finite element nu-

merical simulations were performed using the COMSOL multi-

physics package. The electric field and temperature

distributions were determined by simultaneously solving the

nonlinear, coupled current continuity and heat equations.

The results were then integrated to calculate the free energy

of Eq. (3). A search algorithm was used to determine the

minimum free energy in the parameter space of applied volt-

age and SPCF radius. The simulations relied on neither the

flat-plate capacitor geometry nor the field and temperature

approximations of Eq. (4).

Numerous simulations were performed for a broad range

of device sizes and geometries. Figures 3 and 4 provide sam-

ples of simulation results for the device structure described in

Fig. 1 of Ref. 8; overall, very good agreement was obtained

without adjusting parameters. The simulation results in Fig.

4(a) clearly indicate the NDR knee in the bottom part of the

IV curve, where the SPCF radius increases with I much faster

than
ffiffi
I
p

. That region of NDR corresponds to the critical

region described in our analytical treatment [cf. Eq. (10)].

VI. TIME DEPENDENT FILAMENT

To describe the filament evolution, Eq. (2) should be solved

together with the circuit equation corresponding to Fig. 1,

C
dU

dt
¼ V

RL
� U

1

RL
þ 1

R

� �
(14)

where U is the voltage across device and R is the device re-

sistance. In general, this does not allow for any simple ana-

lytical results.

However, the standard linear stability analysis is straight-

forward and leads to the equations

ddU

dt
¼ a11dU þ a12dr;

ddr

dt
¼ a21dU þ a22dr; (15)

FIG. 3. (Color online) Current as a function of SPCF radius indicating the

typical I / r2 dependence. Excellent agreement is obtained between the ana-

lytical result of Eq. (12), our simulation, and data from Ref. 8.

FIG. 4. (Color online) (a) Simulated IV of a filament for the device

described in Ref. 8 at two different load resistances RL. The holding current

Ih and voltages Vh1 and Vh are shown. (b) Filament current density for pores

(active device regions) of diameters 25 lm and 50 lm. Saturation occurs

when the SPCF fills the pore. The results are in good agreement with the

data8 (not shown here).
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where dU and dr are small deviations of U and r from

their equilibrium values. The coefficients are given by the

expressions

a11 ¼ �
1

CR
� 1

CRL
; a12 ¼

2U

RCr
;

a21 ¼ �b
@2F

@r@U
; a22 ¼ �b

@2F

@r2
; (16)

with all quantities taken at the steady state condition

@F=@r ¼ 0 [see Eq. (2)]. With Eq. (4) and U¼ IR taken into

account, the free energy can be conveniently represented as

F ¼ U2hr2

8qj
þ CU2

2
þ 2prhrþ pr2hl: (17)

Reducing Eqs. (15) to a single equation of second order for

dU / expðktÞ, one gets the expression for k,

k ¼ a11 þ a22

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða11 þ a22Þ2

4
þ a12a21 � a22a11

s
; (18)

which can be either real and positive (decay of the filament

with concomitant increase of potential across it) or real and

negative (filament growth resulting in the decrease of U), or

imaginary (oscillations) depending on the material and circuit

parameters included in the coefficients aij. While all these

temporal regimes have been experimentally observed for

SPCFs in chalcogenide devices (see Ref. 23, and references

therein), and they are generally known for other types of fila-

ments,13 we note that the range of applicability of the above

linear analysis is rather limited. The limitation is due to the

fact that the thermally activated mobility coefficient b is

exponentially dependent on temperature and thus on the fila-

ment radius r and voltage U. This dependence was neglected

in the above analysis, since its related contributions to dr and

dU appeared in multiplication with @F=@r ¼ 0. However,

because of the very strong exponential dependence of

bðr;UÞ, the higher powers of dr and dU can become impor-

tant even when these quantities remain relatively small. The

analysis of this situation and the temporal behavior of SPCFs

will be presented in more detail elsewhere.

VII. CONCLUSIONS

In conclusion, we have proposed a theory of second

phase conductive filaments starting from the basic kinetic

approach (Fokker–Planck equation). Our consideration here

was based on numerical parameters chosen to make the

results verifiable against the comprehensive set of data avail-

able for filaments in chalcogenide threshold switches; how-

ever the approach remains rather general and extendable to

other systems. Our theory is built on the concepts of the clas-

sical theory of phase transitions (nucleation), explicitly

accounting for the difference in chemical potentials and

interfacial energy between two phases; it should not be

mixed with the existing theories of current filamentation in

semiconductors. More specifically:

(1) For the steady state case, analytical expressions for the

average filament radius and current-voltage characteris-

tics have been derived.

(2) Numerical modeling has been developed for the average

SPCF characteristics in structures of arbitrary

configurations.

(3) Our results correctly predict the filament properties

observed in chalcogenide threshold switches, particularly

the filament radius versus current, r /
ffiffi
I
p

, and the corre-

sponding features of their IV characteristics, such as neg-

ative differential resistance that vanishes at high currents.

The agreement with experimental data is remarkable,

without adjusting any parameters.

(4) We have also shown that our approach predicts the

observed regimes of filament temporal behavior includ-

ing growth, decay, and oscillations.

Future work will extend this theory to include more

adequate transient analysis beyond the linear stability limita-

tions and specific applications (memory devices, shunting in

thin-film photovoltaics, dielectric breakdown, etc.). With

respect to threshold switches and phase change memory, it will

also be important to explicitly include the effects of Zener-

type blocking electrodes that will add a constant voltage com-

ponent to the predicted current-voltage characteristics.
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