Comment 1: Either of highlighted answers to question 5 was accepted.

Comment 2: Arithmetical errors were not penalized for; where possible they were assumed to be the cause of incorrect answers.
#1. A long straight wire is in the plane of a rectangular conducting loop. The straight wire carries a constant current i, as shown. While the wire is being moved toward the rectangle the current in the rectangle is:

A. zero
B. clockwise
C. counterclockwise
D. clockwise in the left side and counterclockwise in the right side

#2. A charged capacitor and an inductor are connected in series. At time $t = 0$ the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time after $t = 0$ that the voltage across the inductor is a maximum is:

A. T
B. $T/4$
C. $T/2$
D. T
E. $2T$

#3. Radio receivers are usually tuned by adjusting the capacitor of an LC circuit. If $C = C_1$ for a frequency of 600 kHz, then for a frequency of 1200 kHz one must adjust C to:

A. $C_1/2$
B. $C_1/4$
C. $2C_1$
D. $4C_1$
E. $\sqrt{2}C_1$

#4. A coil has a resistance of 60 Ω and an impedance of 100 Ω. Its reactance, in ohms, is:

A. 40
B. 60
C. 80
D. 117
E. 160

#5. A charged capacitor and an inductor are connected at time $t=0$. After one and a half periods of the resulting oscillations, which of the following quantities reaches its maximum?

A. Magnetic energy
B. Magnetic flux through the inductor
C. The emf of the inductor
D. di/dt
E. None of the above

#6. A 20 mH superconducting inductor in an oscillating LC circuit with angular frequency 3000 s$^{-1}$ stores a maximum energy 1 μJ. The maximum voltage on the capacitor is:

A. 120 V
B. 0.04 F
C. 0.6 mV
D. Zero
E. Impossible to evaluate
F. None of the above