

ID	Exam1
R00347915	67
R00501120	50
R00173715	33
R00426265	33
R00309295	67
R00078234	50
R00260460	83
R00581866	67
R00338595	34
R00266985	67
R00671130	67
R00156101	50
R00524949	50
R00721717	33
R00608043	17
R00451316	67
R00582739	67
R00475612	67
R00666903	67
R00118197	67
R00475169	34
R00142053	87
R00458387	87
R00074336	83
R00426050	83
R00466194	67
R00714675	67
R00243871	67
R00601621	100
R00338247	67
R00101963	67
R00308771	50
R00601036	67
R00656467	33
R00680272	33
R00574504	67
R00454999	17
R	6368

Summer 2010. Exam 1. QQ 1-3

Summer 2010. Exam 1. QQ 4-6

4) A conducting sphere of radius 1 cm has a charge of $1.0 \times 10^{-9} \mathrm{C}$ deposited on it. The magnitude of the electric field in N/C just outside the surface of the sphere is: 1. 0 2. 450 3. 900 4. 4500 5. 90,000	5) Charge is distributed uniformly along a straight wire. The electric field 2 cm from the wire is 20 N/C. The electric field 4 cm from the wire is: 1. $120 \mathrm{~N} / \mathrm{C}$ 2. $80 \mathrm{~N} / \mathrm{C}$ 3. $40 \mathrm{~N} / \mathrm{C}$ 4. $10 \mathrm{~N} / \mathrm{C}$ 5. $5 \mathrm{~N} / \mathrm{C}$	6) A $3.5-\mathrm{cm}$ radius hemisphere contains a total charge of $6.6 \times$ $10^{-7} \mathrm{C}$. The flux through the rounded portion of the surface is $9.8 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$. The flux through the flat base is: 1. 0 2. $+2.3 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$ 3. $-2.3 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$ 4. $-9.8 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$ 5. $+9.8 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$

