

ID	Exam1
R00347915	67
R00501120	50
R00173715	33
R00426265	33
R00309295	67
R00078234	50
R00260460	83
R00581866	67
R00338595	34
R00266985	67
R00671130	67
R00156101	50
R00524949	50
R00721717	33
R00608043	17
R00451316	67
R00582739	67
R00475612	67
R00666903	67
R00118197	67
R00475169	34
R00142053	87
R00458387	87
R00074336	83
R00426050	67
R00466194	67
R00714675	67
R00243871	100
R00601621	67
R00338247	67
R00101963	50
R00308771	67
R00601036	100
R00656467	33
R00680272	33
R00574504	67
R00454999	17
R00451168	33
R00056006	83

 Two small charged objects attract each other with a force F when separated by a distance d. If the charge on each object is reduced to one-fourth of its original value and the distance between them is reduced to d/2 the force becomes: F/16 F/8 F/4 F/2 	2) Charge Q is distributed uniformly throughout a spherical insulating shell. The net electric flux in N \cdot m2 /C through the inner surface of the shell is: 1. 0 2. Q/ ε_0 3. 2Q/ ε_0 4. Q/2 ε_0 5. Q/2 $\pi \varepsilon_0$	3) Total negative charge on the electrons in 1 kg of helium (atomic number 2, molar mass 4) is: 1. 48C 2. 2.4×10^7 C 3. 4.8×10^7 C 4. 9.6×10^8 C 5. 1.9×10^8 C
---	--	--

 4) A conducting sphere of radius 1 cm has a charge of 1.0 × 10⁻⁹ C deposited on it. The magnitude of the electric field in N/C just outside the surface of the sphere is: 1. 0 2. 450 3. 900 4. 4500 5. 90, 000 	 5) Charge is distributed uniformly along a straight wire. The electric field 2 cm from the wire is 20 N/C. The electric field 4 cm from the wire is: 1. 120 N/C 2. 80 N/C 3. 40 N/C 4. 10 N/C 5. 5 N/C 	6) A 3.5-cm radius hemisphere contains a total charge of 6.6×10^{-7} C. The flux through the rounded portion of the surface is 9.8×10^4 N \cdot m ² /C. The flux through the flat base is: 1. 0 2. +2.3 × 10 ⁴ N \cdot m ² / 32.3 × 10 ⁴ N \cdot m ² / 49.8 × 10 ⁴ N \cdot m ² / 5. +9.8 × 10 ⁴ N \cdot m ² /
---	---	--