Examination II for PHYS 6220/7220, Fall 2015

1. A particle of mass m and angular momentum ℓ moves in a central force field and has an equation of the orbit given by $\mathrm{r}=\mathrm{a}(1+\cos (\theta))$, where a is a positive constant of appropriate dimensions.
(a) Find the form of the potential $\mathrm{V}(\mathrm{r})$. The answer should only contain the constants a, ℓ and m. (2 points)
(b) A particle of mass M approaches this center of force from far away with initial speed V_{0} and impact parameter b . In what follows completely ignore the influence of the first particle of mass m on M . Derive and hence draw the shape of the effective potential, $\mathrm{V}_{\mathrm{e}}(\mathrm{r})$, that the mass M experiences. Justify with precise mathematical reasoning the shape of $\mathrm{V}_{\mathrm{e}}(\mathrm{r})$. Mark any critical points $\left(\mathrm{r}_{\mathrm{c}}\right)$ that may occur on this graph giving expressions for these points r_{c} and the corresponding $V_{e}\left(r_{c}\right)$. (4 points)
(c) From the answer in part (b) determine the critical value of the impact parameter of M above which the particle fails to reach the origin? Quantitative answers in parts (b) and (c) should only contain the constants $\mathrm{a}, \mathrm{b}, \ell, \mathrm{m}, \mathrm{M}$ and V_{0}. (2 points)
2. A right handed Cartesian frame S is rotated about its fixed origin to obtain another frame S^{\prime}. The initial set of right handed unit vectors along the X, Y and Z axes of S are $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}$ and \mathbf{e}_{3}, respectively Those along the new axes, $\mathrm{X}^{\prime}, Y^{\prime}$ and Z^{\prime}, of the frame S^{\prime} are $\mathbf{e}_{1} \mathbf{\prime}^{\prime}, \mathbf{e}_{\mathbf{2}}{ }^{\prime}$ and $\mathbf{e}_{3}{ }^{\prime}$, respectively. It is known that $\left(\mathbf{e}_{1}\right)^{\mathbf{T}}=(1,0,0)$ and $\left(\mathbf{e}_{3}\right)^{\mathbf{T}}=(0,0,1)$. Similarly it is known that $\left(\mathbf{e}_{\mathbf{1}} \mathbf{\prime}^{\mathbf{T}}=(1 / 5)(4,1, \sqrt{8}),\left(\mathbf{e}_{2}{ }^{\mathbf{\prime}}\right)^{\mathbf{T}}=(1 / 5)(1,4,-\sqrt{8})\right.$ and $\left(\mathbf{e}_{3}\right)^{\mathbf{T}}=(1 / 5)(-\sqrt{8}, \sqrt{8}, 3)$. Express all angles in radians in the interval $[0,2 \pi]$.
(a) Find the matrix corresponding to this rotation. Do not convert any matrix elements to decimals. (5 points)
(b) Check that it is indeed a rotation matrix. (1 point)
(c) Find the angle of rotation Φ. (1 point)
(d) Find the unit vector along the axis of rotation \mathbf{n}. ($\mathbf{2}$ points)
(e) If this rotation was carried out not about a single axis and angle but by three Euler angle rotations then find the three Euler angles θ, ψ, and ϕ. Assume θ is an acute angle.
(3 points)
