## Examination II for PHYS 6220/7220, Fall 2014

1. A one dimensional simple harmonic oscillator has mass m , and generalized canonical coordinates q and p , and vibrational angular frequency $\omega$, and Hamiltonian $\mathrm{H}(\mathrm{q}, \mathrm{p})$.
(a) Evaluate $[\mathrm{u}, \mathrm{H}]$ where $\mathrm{u}=-\mathrm{i} \omega \mathrm{t}+\ln (\mathrm{p}+\mathrm{im} \omega \mathrm{q})$ and $\mathrm{i} \equiv \sqrt{-1}$. (2 points)
(b) Use result in part (a) to obtain du/dt. Comment on your result. ( 2 points)
(c) Express H as $\mathrm{H}=\mathrm{H}(\mathrm{u})$. (1 point)
2. Two successive rotations are performed on a rigid body with a common fixed point on the body for both rotations. Each rotation is through $\pi$ radians. The two rotation axes are defined by unit vectors in the laboratory Cartesian coordinate system given by $\mathbf{n}_{1}=(1,1,0) / \sqrt{2}$, and $\mathbf{n}_{2}=(0,0,1)$ respectively.
(a) Find all elements of the matrix $\mathbf{A}$ corresponding to the first rotation. (1 point)
(b) Find all elements of the matrix $\mathbf{B}$ corresponding to the second rotation. (1 point)
(c) If the resulting net displacement of the body is represented by a matrix $\mathbf{R}$ then find all its elements. (2 points)
(d) Another single rotation about a fixed axis is carried out to bring the body back to its original configuration. Find the needed angle of rotation and the axis of rotation. (2 point)
(e) If the rotation in part (d) is carried out by three Euler angle rotations find these angles. (3 points)
3. Consider the motion of a particle of mass $m$ and magnitude of angular momentum $\ell$, moving in a potential $\mathrm{V}(\mathrm{r})=-\left[(\mathrm{k} / \mathrm{r})+\left(\mathrm{k}^{\prime} / \mathrm{r}^{3}\right)\right]$, where r is the distance of the particle from the origin and k and $\mathrm{k}^{\prime}$ are positive constants of appropriate dimensions.
(a) Find the radius $r_{0}$ of a circular orbit for the particle in terms of $k, k^{\prime}, m$, and $\ell .(2$ points)
(b) Find the critical radius $r_{0 c}=r_{0 c}\left(k, k^{\prime}\right)$ for which circular orbits will be marginally stable. (2 points)
(c) State if orbits for which $r_{0}>r_{0 c}$ are stable. State if orbits for which $r_{0}<r_{0 c}$ are stable. Give justifications for both answers. ( $\mathbf{2}$ points)
(d) If a circular orbit exists with radius $r_{0 c}$ find it angular speed $\omega=\omega\left(\mathrm{m}, \mathrm{k}, \mathrm{k}^{\prime}\right)$. (2 points)
