Examination I for PHYS 6220/7220, Fall 2014

1. A flat plate of mass m_{1} is free to slide on a frictionless horizontal surface. A particle of mass m_{2} is constrained to move in a horizontal circle of radius b centered at a fixed point P on the plate. The system as a whole has zero initial linear momentum.
(a) Draw a detailed figure, defining a proper frame of reference and generalized coordinates. Depict the generalized coordinates on the figure and also describe them in words. (2 points)
(b) Write an expression for the Lagrangian of the system. Make proper use of a Lagrange's undetermined multiplier (λ) to find the force between the two masses associated with the fixed radius b. (2 points)
(c) Write all the relevant Euler-Lagrange equations. (2 points)
(d) Integrate all the equations completely. ($\mathbf{3}$ points)
(e) Using result in (d) find the simplest expression for the multiplier. ($\mathbf{1}$ points)
(f) Give expressions for all the constants of motion in this problem. ($\mathbf{1}$ points)
2. A charged particle of charge e is subject to an electro-magnetic field. The vector potential \mathbf{A} that generates this field is given in Cartesian coordinates by $\mathbf{A}=(0, x B, 0)$ where B is a positive constant. The scalar potential Φ is zero.
(a) Write the Lagrangian for this system. (1 point)
(b) Write the Hamiltonian for the system. (1 point)
(c) Find the constants of motion that appear in the Hamiltonian. (1 point)
(d) Use the results in part (c) to reduce the dimensionality of the problem. (1 point)
(e) Now write Hamilton's equations for this reduced dimensionality problem. (1 point)
(f) Solve the equations in part (e). (1 point)
(g) Using results from parts (c)-(f) obtain the complete time dependence of all three Cartesian coordinates. (2 points)
(h) Describe the shape of the trajectory found after completing part (g). Prove quantitatively that your described shape is correct. (1 point)
