Final Examination for PHYS 6220/7220, Fall 2014

1. A three-dimensional surface is defined by the equation $z=b x^{2}$ where b is a positive constant of appropriate dimensions. Two arbitrary points A and B on the surface have coordinates ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$), respectively. Express all answers in terms of given quantities only.
(a) Find the equation of the curve which traverses the shortest path on the surface to join A to B. (5 points)
(b) Find this shortest distance between these two points along that curve. (2 points)
2. Two identical simple planar pendulums, each of length b and mass m, are coupled by a spring of constant κ as shown in the figure. When the masses are hanging vertically the spring is in its equilibrium length $\boldsymbol{\ell}$. When they oscillate they make angles θ_{1} and θ_{2} with the vertical as shown. In the limit $\ell / b \ll 1$ we may approximate the extension or contraction in the spring to be $b\left(\sin \left(\theta_{1}\right)-\sin \left(\theta_{2}\right)\right)$. The magnitude of the acceleration due to gravity is g .
(a) Write the Lagrangian of the system in terms of appropriate generalized coordinates. (3 points)
(b) Find the matrices for \mathbf{T} and \mathbf{V}. (2 points)
(c) Find the frequencies of normal modes of small oscillations. (2 points)
(d) Find the corresponding eigenvectors. (2 points)
(e) Find the most general solution to this small oscillations problem. (1 point)
(f) Depict and describe the normal modes of oscillations. (1 point)

