Examination I for PHYS 6220/7220, Fall 2013

1. Three points P_{1}, P_{2} and P_{3} are fixed and equally spaced about the circumference of a circle. Each point exerts a force on a mass m given by $\mathbf{F}_{i}=-k \mathbf{r}_{i}$ where \mathbf{r}_{i} is the position vector of the mass with respect to the point P_{i}, with $\mathrm{i}=1,2$ and 3 . Here k is positive constant of suitable dimensions. At $\mathrm{t}=0$ the position and velocity of the mass are \mathbf{S} and \mathbf{W}, respectively. There is no gravity in this problem.
(a) Define clearly a frame of reference and a set of generalized coordinates for the system with a figure. State how the coordinate system and all coordinates are defined in words as well. (2 points)
(b) Derive the Lagrangian for the system. (2 points)
(c) Derive all the Euler-Lagrange equations of motion. (2 points)
(d) Solve all the Euler-Lagrange equations including all given initial conditions. (2 points)
(e) State all constants of motion in the problem. Explain why these constants are as expected. ($\mathbf{2}$ points)
(f) Under what conditions can the particle motion be limited to occur on a sphere? (1 point)
2. A river has fixed width w with one side along the Y axis. A boat starts from the origin O on one side of the river and travels to the other side at a point P with coordinates (w, b), where b > 0 . The boat travels at a constant natural speed, v_{0}, if the water is still. The river current has a velocity that is a vector function, $\mathbf{V}_{\mathbf{C}}=\left[\mathrm{v}_{0} \mathrm{~g}(\mathrm{x})\right] \mathbf{j}$, which does not change with time. Here \mathbf{j} is the unit vector along the Y axis. The function $g(x)$ is smoothly varying and such that $g(0)=g(w)=0$ and $0 \leq \mathrm{g}(\mathrm{x})<1, \forall \mathrm{x} \in[0, \mathrm{w}]$.
(a) Draw a figure showing the trajectory of the boat. Let the shape of this trajectory be given by the unknown function $f(x)$. Define the angle, β, that the tangent to the trajectory makes with the X axis at any arbitrary location. Note $\beta=\beta(\mathrm{x})$. Define the steering angle that the rudder of the boat makes with the X axis as α. Note $\alpha=\alpha(\mathrm{x})$. (1 point)
(b) Write an expression for the time of travel, T , of the boat using only the relevant quantities amongst $\mathrm{w}, \mathrm{b}, \mathrm{v}_{0}, \mathrm{~g}(\mathrm{x}), \mathrm{f}(\mathrm{x})$, and the two angles α and β. (2 points)
(c) Write an expression that can relate the two angles with other relevant quantities including $\mathrm{f}(\mathrm{x})$. (2 points)
(d) From results in parts (b) and (c) get rid of α and β from the time of travel expression to only have it dependent on $f(x)$ and $g(x)$ and their derivatives if needed. (2 points)
(e) Applying the calculus of variations find the equation that $f(x)$ should obey to minimize the time of travel. ($\mathbf{2}$ points)
(f) Solve this equation as much as you can. (1 point)
(g) Use all the boundary conditions given. What is the form of $f(x)$ in the limiting case $g(x)=k$, a constant? Find the time of travel for the special case $\mathrm{k}=0$. Justify your answer in this latter case.
(2 points)
