Third Examination for PHYS 6220/7220, Fall 2012

1. A sphere of uniform mass density ρ and radius b_{1} has its geometric center at point O. A spherical cavity of radius b_{2} centered at point P is now introduced in it. The distance between the center of the sphere and the cavity is $|\mathbf{O P}|=\mathrm{c}$, such that $\left(\mathrm{c}+\mathrm{b}_{2}\right)<\mathrm{b}_{1}$. All answers should be expressed in given quantities ρ, b_{1}, b_{2}, and c.
(a) Compute the inertia matrix through an appropriately chosen set of axis passing through O. Describe carefully the choice of axes. ($\mathbf{3}$ points)
(b) Find the center of mass point Q of this rigid body. (1 point)
(c) Write the Euler Lagrange equations describing the motion of this rigid body where point O is held fixed and the body lies in a uniform gravitational field of magnitude g. ($\mathbf{3}$ points)
(d) State all constants in the problem and reduce the problem to a one dimensional problem. (4 points)
(e) What changes occur in solving for the motion of the rigid body in part (c) and (d) if the fixed point is chosen to be Q instead of O. Describe this motion qualitatively. (2 points)
2. Two particles each of mass m are constrained to move on a circle of radius b. They are connected by a spring of spring constant k and equilibrium length c such that $0<c<2 b$. There is no gravity in the problem. Define an appropriate frame of reference and all the generalized coordinates with a figure.
(a) Compute the kinetic energy T of the system. ($\mathbf{1}$ point)
(b) Write an expression for the potential energy V of the system purely as a function of generalized coordinates. (1 point)
(c) Find the point of equilibrium for this system. State it in words and make comments about its uniqueness. (1 point)
(d) Construct the appropriate Lagrangian for small oscillations about the equilibrium point by constructing the \mathbf{T} and \mathbf{V} matrices. ($\mathbf{2}$ points)
(e) Find the eigen-frequencies for these oscillations. (2 points)
(f) Find the corresponding eigenvectors. (2 points)
(g) Find the most general solution. (1 point)
(h) Depict the normal modes with arrows. (1 point)
