Examination II for PHYS 6220/7220, Fall 2012

1. A system of two degrees of freedom is described by a Hamiltonian
$\mathrm{H}=\mathrm{q}_{1} \mathrm{p}_{1}-\mathrm{q}_{2} \mathrm{p}_{2}-\mathrm{aq}_{1}^{2}+b \mathrm{q}_{2}^{2}$, where a and b are constants. Two functions are defined by $\mathrm{F}_{1}=\left(\mathrm{p}_{1}-\mathrm{aq}_{1}\right) / \mathrm{q}_{2}$ and $\mathrm{F}_{2}=\mathrm{q}_{1} \mathrm{q}_{2}$.
(i) Compute $\left[\mathrm{F}_{1}, \mathrm{H}\right]$ and $\left[\mathrm{F}_{2}, \mathrm{H}\right]$. (4 points)
(ii) Analyzing the results from part (i) further, what can you say about these two functions? (2 points)
2. A particle of mass m approaches a center of force from a far away distance with initial speed v_{0} and impact parameter b. The center of force exerts a force on the particle corresponding to the potential $\mathrm{V}(\mathrm{r})=-\mathrm{k} / \mathrm{r}^{\mathrm{n}}$, where r is the distance of the particle from the center of force, k is a positive constant and n is a positive integer. Express all answers in terms of the known constants, $\mathrm{m}, \mathrm{k}, \mathrm{v}_{0}, \mathrm{~b}$ and n .
(i) Find an implicit equation to determine distance of closest approach c. (3 points)
(ii) State all the cases for the value of n when analytic closed form solutions can be obtained. Solve explicitly for c whenever possible in these cases. (5 points)
(iii) State any special conditions that should be satisfied by the known constants in part
(ii). (2 points)
3. Two successive rotations are performed on a rigid body with a common fixed point on the body for both rotations. Each rotation is through π radians. The two rotation axes are defined by unit vectors in the laboratory Cartesian coordinate system given by $\mathbf{n}_{1}=(1,0,1) / \sqrt{2}$, and $\mathbf{n}_{2}=(0,0,1)$ respectively.
(a) Find all elements of the matrix \mathbf{A} corresponding to the first rotation. (1 point)
(b) Find all elements of the matrix \mathbf{B} corresponding to the second rotation. (1 point)
(c) If the resulting net displacement of the body is represented by a matrix \mathbf{R} then find all its elements. (2 points)
(d) Find the resulting angle of rotation as if only one effective rotation was performed on the body through only one axis. ($\mathbf{1}$ point)
(e) What are the Euler angles (θ, ϕ, ψ) that would be needed if the matrix \mathbf{R} were to be obtained by three rotations by these angles rather than a single rotation. ($\mathbf{3}$ points)
