Examination I for PHYS 6220/7220, Fall 2012

1. For many physical situations one encounters a general linear differential equation of constraint in the set of coordinates $\left\{x_{i}, i=1,2, \ldots n\right\}$ of the form $\sum_{i=1}^{n} g_{i}\left(x_{1}, x_{2}, \ldots x_{n}\right) d x_{i}=0$. A constraint of this type may be integrated if an integrating function $f=f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is found such that it obeys $\frac{\partial\left(\mathrm{fg}_{\mathrm{i}}\right)}{\partial \mathrm{x}_{\mathrm{j}}}=\frac{\partial\left(\mathrm{fg}_{\mathrm{j}}\right)}{\partial \mathrm{x}_{\mathrm{i}}}, \quad \forall \mathrm{i}, \mathrm{j}$. In a particular problem we obtain the following set of coordinates: $\mathrm{x}, \mathrm{y}, \theta$, and ϕ. These follow a constraint equation: $d x-(b \sin \theta) d \phi=0$.
(a) For this equation identify the value of n and all the functions g_{i}, $(\mathrm{i}=1,2, \ldots \mathrm{n})$. $(2$ points)
(b) Evaluate all the relevant partial differential equations to find the factor f , if it exists and thus integrate the equation. If it does not exist then prove rigorously that $\mathrm{f}=0$. (4 points)
2. A thin solid disk of mass m_{1} and radius b_{1} can move without friction on a horizontal surface. One entire side of the disk always stays in contact with the surface. Another thin solid disk of mass m_{2} and radius b_{2} is pinned through its center to a point off the center of the first disk, by a distance c , so that it can rotate without friction on the first disk. One entire side of the second disk always stays in contact with the upper surface of the first disk. Note $\mathrm{c}<\mathrm{b}_{1}$ and $\mathrm{b}_{2}<\mathrm{b}_{1}$.
(a) Define clearly a frame of reference and a set of generalized coordinates for the system with a figure. State how all coordinates are measured in words as well. ($\mathbf{3}$ points)
(b) Derive the Lagrangian for the system. (4 points)
(c) Derive all the Euler-Lagrange equations for the system. (4 points)
(d) Solve all the Euler-Lagrange equations. (4 points)
(e) State all constants of motion in the problem. Explain why these constants are as expected. (2 points)
3. A Hamiltonian is given by $H(x, p)=(c p) /(a x)$, where a and c are positive constants and $\mathrm{x}>0$ and $\mathrm{p}>0$.
(a) Solve the Hamilton equations of motion to obtain $x=x(t)$ and $p=p(t)$. ($\mathbf{3}$ points)
(b) Obtain the Lagrangian for the system $\mathrm{L}=\mathrm{L}(\mathrm{x}, \dot{\mathrm{x}}, \mathrm{t})$. Comment on your preference to use the Hamiltonian or Lagrangian formulation to solve this problem. ($\mathbf{2}$ points)
