Physics 4210/5210 Theoretical Mechanics Fall 2025 - Exam 2

- [1] An undamped oscillator has period $\tau_0 = 1$ second. When weak damping is added, it is found that the amplitude of oscillation drops by 50% in one period τ_1 .
- (a) How big is β/ω_0 ? [2 point]
- (b) What is τ_1 ? [2 points]
- [2] Figure 1 shows a simple pendulum (mass m, length λ) whose point of support P is attached to the edge of a wheel (center O, radius R) that is forced to rotate at a fixed angular velocity ω . At t = 0, point P is level with O on the right.
- (a) Write down r(t). [1 points]
- (b) Write down v(t). [1 points]
- (c) Write down the Lagrangian? [1 points]
- (d) Find the equation of motion for the angle ϕ . [3 points]
- [3] A simple pendulum (mass M and length L) is suspended from a cart (mass m) that can oscillate on the end of a constant spring k, as shown in Figure 2.
- (a) Write the Lagrangian in terms of the two generalized coordinates x and ϕ , where x is the extension of the spring from its equilibrium length. [2 points]
- (b) Find the two Lagrange equations. [2 points]
- (c) Simplify the equations to the case that both x and ϕ are small. [2 points]
- [4] A particle of mass m moves with angular momentum about a fixed force center with $F(r) = k/r^3$ where k can be positive or negative.
- (a) Sketch the effective potential energy U_{eff} for various values of k and describe the various possible kinds of orbit. [2 points]
- **(b)** Write down and solve the transformed radial equation and use your solutions to confirm your predictions in part (a). [5 points]

Fig. 1

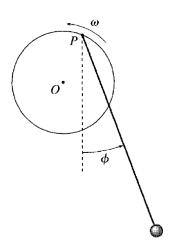
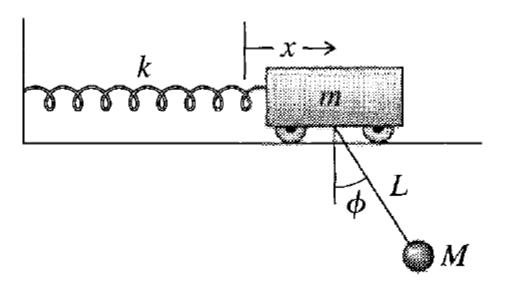



Fig. 2

