Cylindrical coordinates #rvy

The cylindrical coordinate system extends polar coordinates into 3D by using the standard vertical coordinate z. This gives coordinates (r, θ, z) consisting of:

coordinate	name	range	definition
r	radius	$0\leq r<\infty$	distance from the <i>z</i> -axis
heta	azimuth	$-\pi < heta \leq \pi$	angle from the x-axis in the x -y plane
z	height	$-\infty < z < \infty$	vertical height

The diagram below shows the cylindrical coordinates of a point P. By changing the display options, we can see that the basis vectors are tangent to the corresponding coordinate lines. Changing θ moves P along the θ coordinate line in the direction \hat{e}_{θ} , and similarly for the other coordinates.

Cylindrical coordinates are defined with respect to a set of Cartesian coordinates, and can be converted to and from these coordinates using the <u>atan2</u> function as follows.

Conversion between cylindrical and Cartesian coordinates #rvy-ec $x = r \cos \theta$ $r = \sqrt{x^2 + y^2}$ $y = r \sin \theta$ $\theta = \operatorname{atan2}(y, x)$ z = z z = zDerivation #rvy-ec-d +

The basis vectors are tangent to the coordinate lines and form a right-handed orthonormal basis $\hat{e}_r, \hat{e}_\theta, \hat{e}_z$ that depends on the current position \vec{P} as follows. We can write either \hat{e}_z or \hat{k} for the vertical basis vector.

Cylindrical basis vectors	#rvy-eb				
		$egin{aligned} \hat{e}_r &= \cos heta \hat{\imath} + \sin heta \hat{\jmath} \ \hat{e}_ heta &= -\sin heta \hat{\imath} + \cos heta \hat{\jmath} \ \hat{e}_z &= \hat{k} \end{aligned}$			
		$egin{aligned} \hat{i} &= \cos heta \hat{e}_r - \sin heta \hat{e}_ heta \ \hat{j} &= \sin heta \hat{e}_r + \cos heta \hat{e}_ heta \ \hat{k} &= \hat{e}_z \end{aligned}$			
			Derivation	#rvy-eb-d	+

If the cylindrical coordinates change with time then this causes the cylindrical basis vectors to rotate with the following angular velocity.

Angular velocity of the cylindrical basis #rvy-ew $\vec{\omega} = \dot{\theta} \hat{e}_z$ Derivation #rvy-ew-d +

Warning! #rvy-ir

We normally write \vec{r} for the position vector of a point, but if we are using cylindrical coordinates r, θ, z then this is dangerous. This is because r might mean the magnitude of \vec{r} or the radial coordinate, which are different. To avoid this confusion we use $\vec{\rho}$ for the position vector and r for the radial coordinate. The rotation of the basis vectors caused by changing coordinates gives the time derivatives below.

A point *P* at a time-varying position (r, θ, z) has position vector $\vec{\rho}$, velocity $\vec{v} = \dot{\vec{\rho}}$, and acceleration $\vec{a} = \ddot{\vec{\rho}}$ given by the following expressions in cylindrical components.

Position, velocity, and acceleration in cylindrical components #rvy-ep $\vec{\rho} = r \, \hat{e}_r + z \, \hat{e}_z$ $\vec{v} = \dot{r} \, \hat{e}_r + r \dot{\theta} \, \hat{e}_\theta + \dot{z} \, \hat{e}_z$ $\vec{a} = (\ddot{r} - r \dot{\theta}^2) \, \hat{e}_r + (r \ddot{\theta} + 2 \dot{r} \dot{\theta}) \, \hat{e}_\theta + \ddot{z} \, \hat{e}_z$ Derivation #rvy-ep-d +

Copyright (C) 2012-2015 Matthew West