Some $a \equiv b, a$ is identically equal to b

Notations $A \Longleftrightarrow B, A$ imphis B and B implies A,
\exists, there exists or there exist
\ni, such that
\therefore, therefore
\because, because
iff, if and only if
$\left\{a_{i}\right\}$, the set of all elements a_{1}, q_{2}, \ldots. upto the terminal value of i.
$\delta_{m n}$, Kronecker δ function for discrete indices m and n. It equals 1 when $m=n$ and 0 when $m \neq n$,
$\delta(x-y)$, Dirac delta function for continuous arguments x and y.
$\Phi[f(x)], \Phi$ is a functional of $f \cdot f$ is a function of x.

- Matrices will always be denoted by capital letters with two bars above as follows: $\overline{\bar{A}}, \overline{\bar{P}}$, and $\overline{\bar{Y}}$ are all matrices.
- $a_{i j}, p_{i j}$, and $y_{i j}$ are the i, j-th elements of matrices $\overline{\bar{A}}, \overline{\bar{P}}$, and $\overline{\bar{Y}}$ respectively.
- The determinant of a matrix is denoted as follows: $\operatorname{det}(\overline{\bar{A}}) \equiv|\overline{\bar{A}}|$
- Multiplication of two matrices is denoted as follows: $\overline{\bar{A}}_{n \times m} \times \overline{\bar{B}}_{m \times p} \equiv \overline{\bar{C}}_{n \times p}$. Note: to multiply two matrices, the number of columns of the first matrix (m) must be equal to the number of rows in the second matrix (m).
- Unit vectors are represented by: $\hat{i} \equiv \hat{e}_{x} \equiv \hat{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]_{3 \times 1}, \hat{j} \equiv \hat{e}_{y} \equiv \hat{e}_{2} \equiv$ $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]_{3 \times 1}$, and $\hat{k} \equiv \hat{e}_{z} \equiv \hat{e}_{3} \equiv\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]_{3 \times 1}$.
- A vector is denoted as: $\bar{a} \equiv\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]_{n \times 1}$
- The transpose of a vector is denoted as: $\bar{a}^{T} \equiv\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]_{1 \times n}$
- The multiplication of a row vector by a column vector is denoted as: $\bar{b}_{1 \times n}^{T} \bar{d}_{n \times 1} \equiv f_{1 \times 1} \equiv \bar{b}^{T} \cdot \bar{d} \equiv f$, which is a scalar.
- The multiplication of a column vector by a row vector is denoted as: $\bar{g}_{n \times 1} \bar{h}_{1 \times n}^{T} \equiv \overline{\bar{L}}_{n \times n}$, which is an $n \times n$ matrix, also called a dyad.

