


Useful Constants and 
Conversion Factors 

Quoted to a useful number of significant figures. 

Speed of light in vacuum 
Electron charge magnitude 
Planck's constant 

Boltzmann's constant 

Avogadro's number 
Coulomb's law constant 

Electron rest mass 
Proton rest mass 
Neutron rest mass 
Atomic mass unit (C12  = 12) 

c = 2.998 x 108  m/sec 
e = 1.602 x 10 = 19 coul 
h = 6.626 x 10-34  joule-sec 
h = h/27c = 1.055 x  10-34  joule-sec  

= 0.6582 x 10-15  eV-sec 
k = 1.381 x 10-23  joule/°K 

= 8.617 x 10-5  eV/°K 
No  = 6.023 x 1023/mole 
1/47rE0  = 8.988 x 109  nt-m2/coul2  

me  = 9.109 x 10-31  kg = 0.5110 MeV/c2 
 mp  = 1.672 x 10-27  kg = 938.3 MeV/c2  

m„ = 1.675 x 10-Z7  kg = 939.6 MeV/c2 
 u = 1.661 x 10-27  kg = 931.5 MeV/c2  

Bohr magneton 
Nuclear magneton 
Bohr radius 
Bohr energy 

Electron Compton wavelength 
Fine-structure constant 
kT at room temperature 

ub = eh/2me  = 9.27 x  10-24  amp-m2  (or  joule/tesla) 
µn  = eh/2m, = 5.05 x 10-27  amp-m2  (or joule/tesla) 
ao  = 47c€0h2/mee2  = 5.29 x 10-11  m  = 0.529 A  
E1  = — mee4/(4rcE0)22h2  = —2.17  x  10-18  

joule = —13.6 eV 
Ac = h/mec = 2.43 x  10-12  m = 0.0243 A  
a = e2/4nE0hc = 7.30 x 10-3  1/137 
k300°K = 0.0258 eV ̂  1/40 eV 

1eV= 1.602 x 10-19  joule 
1 A=10-10 m 

i joule = 6.242 x 1018 eV 
1F=10-15 m 	 l barn (bn)= 10-28m2 
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The figure on the cover is frori ; èction„  9-4, where it is used to show the tendency  

for two identical spin 1/2 particles (such as electrons) to avoid each other if their  

spins are essentially parallel. This tendency, or its inverse for the antiparallel case,  

is one of the recurring themes in quantum physics explanations of the properties of  

atoms, molecules, solids, nuclei, and particles.  
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Appendix C 
THE BOLTZMANN 

DISTRIBUTION 

We present here a simple numerical argument that leads to an approximation of the Boltzmann 
distribution, and then an even simpler general argument that verifies the exact form of the dis-
tribution. Consider a system containing a large number of physical entities of the same kind 
that are in thermal equilibrium at temperature T. To be in equilibrium they must be able to 
exchange energy with each other. In the exchanges the energies of the entities will fluctuate, 
and at any time some will have more than the average energy and some will have less. However, 
the classical theory of statistical mechanics demands that these energies g be distributed ac-
cording to a definite probability distribution, whose form is specified by T. One reason is that 
the average value / of the energy of each entity is determined by the probability distribution, 
and I should have a definite value for a particular T. 

To illustrate these ideas, consider a system consisting of entities, of the same kind, which can 
contain energy. An example would be a set of identical coil springs, each of which contains 
energy if its length is vibrating. Assume the system is isolated from the surrounding environ-
ment so that the total energy content is constant, and assume also that the entities can 
exchange energy with each other through some mechanism so that the constituents of the 
system can come into thermal equilibrium with each other. Purely for the purpose of simpli-
fying the subsequent calculations, we shall, for the moment, also assume that the energy of 
any entity is restricted to one of the values g = 0, AC 2M, 3M, 4M, .... Later we shall let 
the interval M go to zero so that all the values of energy are permitted. For additional sim-
plicity, we shall at first also consider that there are only four (an arbitrarily chosen small 
number) entities in the system and that the total energy of the system has the value 3M (which 
is also chosen arbitrarily to be a small one of the integral multiples of M that the total energy 
must, by the above assumption, necessarily be). Later we shall generalize to systems having a 
large number of entities and any total energy. 

Because the four entities can exchange energy with one another, all possible divisions of the 
total energy 3Ag between the four entities can occur. In Figure C-1 we show all the possible 
divisions, the divisions being labelled by the letter i. For i = 1, three entities have g = 0 and 
the fourth entity has e = 3Ag, giving us the required total energy of 3M. Actually we can 
distinguish among four different ways of getting such a division, because any one of the four 
entities can be the one in the energy state e = 3M. We indicate this in the figure in the column 
marked "number of distinguishable duplicate divisions." A second possible type of division, 
labelled i = 2, is one in which two entities have g = 0, the third entity has e = Ag, and the fourth 
has g = 2Ae. There are twelve distinguishable duplicate divisions in this case, as we verify in 
the next paragraph. The third possible division, labelled i = 3, also has four distinguishable 
duplicate ways of letting one entity have e = 0 and the other three have e = Ag, giving the 
required total energy 3M. 

In evaluating the number of duplicate divisions we count as distinguishable duplicates any 
rearrangement of entities between different energy states. However, any rearrangement of 
entities in the same energy state is not counted as a duplicate, because entities of the same 
kind having the same energy cannot be distinguished experimentally from one another. That 
is, the identical entities are treated as if they are distinguishable, except for rearrangements 
within the same energy state. The total number of rearrangements (permutations) of the four 
entities is 4! = 4 x 3 x 2 x 1. (The number of different ways of ordering four objects is 4! since 
there are four choices of which object is taken first, three choices of which of the remaining 
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4 4/20  i = 3  
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n'(&  40/20 24/20 12/20 4/20 	0/20  

Figure C-1 Illustrating a simple calculation leading to an approximation to the Boltzmann  

distribution.  

objects is taken next, two choices of which is taken next, and one choice only for the last  

object. The total number of choices is 4 x 3 x 2 x 1 - 4!. For n objects the number of different  

orderings is n! = n(n —  1)(n —  2) • • • 1.) But rearrangements within the same energy state do not  

count. Hence, for example, in the case i = 2, the number of distinguishable duplicate divisions  

is reduced from 4! to 4!/2! = 12 because there are 2! rearrangements within the state g = 0  

that do not count as distinguishable. In cases i = 1, or i = 3, the number of such divisions is  

reduced from 4! to 4!/3! = 4 since there are 3! rearrangements within the state e = 0, or the  

state e = MM, that do not count as distinguishable.  

We now make the final assumption: all possible divisions of the energy of the system occur  

with the same probability. Then the probability that the divisions of a given type (or label) will  

occur is proportional to the number of distinguishable duplicate divisions of that type. The  

relative probability, Pi , is just equal to that number divided by the total number of such  

divisions. The relative probabilities are listed in the column marked Pi  in Figure C-1.  

Next let us calculate n'(e), the probable number of entities in the energy state e. Consider  

the energy state g = 0. For divisions of the type i = 1, there are three entities in this state,  

and the relative probability Pi  that these divisions occur is 4/20; for i = 2 there are two entities  

in this state, and Pi  is 12/20; for i = 3 there is one entity, and Pi  is 4/20. Thus n'(0), the probable  

number of entities in the state e = 0, is 3 x (4/20) + 2 x (12/20) + 1 x (4/20) = 40/20. The  

values of n(g) calculated in the same way for the other values of e are listed on the bottom  

of Figure_ C-1, marked n'(‘). (Note that the sum of these numbers is four, so that we find a  

correct total of four entities in all the states.) The values of n'(tf) are also plotted as points in  

Figure C-2. The solid curve in Figure C-2 is the decreasing exponential function  

n(s) = Ae-gie0 	 (C-1)  

where A and go  are constants which have been adjusted to give the best fit of the curve to the  

points representing the results of our calculation. The rapid drop in n'(g) with increasing e  
reflects the fact that, if one entity takes a larger share of the total energy of the system, the  

remainder of the system must necessarily have a reduced energy, and so a considerably reduced  

number of ways of dividing that energy between its constituents. That is, there are many fewer  

divisions of the total energy of the system in situations where a relatively large part of the  

energy is concentrated on one entity.  



	 4 	 
24e 	30Z 	444°  

^ 
 - • 

Figure C -2 A comparison of the results of a simple calculation and the Boltzmann  

distribution.  

Imagine now that we successively make M smaller and smaller, increasing the number of  

allowed states at the same time so as to keep the total energy at its previous value. The result  

of such a process is that the calculated function WV) becomes defined for values of e which  
are closer and closer together. (That is, we get more points on our distribution.) In the limit  

as M -* 0, the energy 6' of an entity becomes a continuous variable, as classical physics  

demands, and the distribution n'(,) becomes a continuous function. If, finally, we allow the  

number of entities in the system to become large, this function is found to be identical with  

the decreasing exponential n(s) of (C-1). (That is, as the points become closer and closer  

together, they no longer scatter about the decreasing exponential but fall right on it.) To verify  

this, by a straightforward extension of our calculation to the case of a very large number of  

energy states and entities, involves some formidable bookkeeping in enumerating the  

distinguishable divisions that have the required values of total energy and number of entities,  

and then calculating the many relative probabilities. We shall verify the validity of the prob-
ability distribution given in (C-1) by a more subtle, but much simpler, procedure.  

Consider a system of many identical entities in thermal equilibrium with each other, en-
closed in walls which isolate it from the surroundings. Equilibrium requires that the entities  

be able to exchange energy. For instance, in interacting with the walls of the system, the  

entities can exchange energy with the walls and so indirectly exchange energy with each other.  

Thus the entities interact with each other in that if one gains energy, it does so at the expense  

of the total energy content of the remainder of the system (all the other entities, plus the walls).  

Except for this energy conservation constraint, the entities are independent of each other.  

The presence of one entity in some particular energy state in no way inhibits or enhances the  

chance that another identical entity will be in that state. Now consider two of these entities.  

Let the probability of finding one of them in an energy state at energy g1  be given by p(gi ).  
Then the probability of finding the other in a state at energy g2  will be given by the same  

probability distribution function, since the entities have identical properties, but evaluated at  

the energy g2. The probability will be p(g2 ). Because of the independent behavior of the  

entities, these two probabilities are independent of each other. As a consequence, the prob-
ability that the energy of one entity will be e1  and that the energy of the other will be g2  
is given by p(gi )p(g2). The reason is that independent probabilities are multiplicative. (If the  

probability of obtaining heads in one flip of a coin is 1/2, then the probability of obtaining  

heads in each of two flips is (1/2) x (1/2) = 1/4, since the flips are independent.)  

Next consider all divisions of the energy of the system in which the sum of the energies of  

the two entities has the same fixed value Si  + g2  as in the particular case just discussed, but  

in which the two entities take different shares of that energy. Since the total energy of the  

isolated system is constant, for all of these divisions the remainder of the system will also have  

a fixed value of energy. So for all of them there are the same possible number of ways for the  

remainder of the system to divide its energy between its constituents. As a consequence, the  

probability of those divisions in which there is a certain sharing of the energy g1  + e2 between  

the two entities can differ from the probability of other divisions, in which there is a different  

sharing of that energy, only if these different sharings occur with different probabilities. If we  

again assume that all possible divisions of the energy of the system occur with the same prob- 
ability we see that this cannot be, and we conclude that all divisions in which the same energy  
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^1 + g2 is shared between the two entities in different ways occur with the same probability.  
In other words, the probability of all such divisions is a function only of 62'1  + g2 and so can 
be written as, say, q(g1  + f2). However, we concluded earlier that the probability for a partic-
ular case can also be written as p(g1 )p(g2). Thus we find that p(A)p(g2) = q(g1 + g2).  

The essential point here is that the probability distribution function p(g) has the property  
that the product of two of these functions, evaluated at two different values of the variables,  
g1 and g2 , is a function of the sum, g1  + g2, of these variables. But an exponential function,  
and only an exponential function, has this property. Recall that the product of two expo-
nentials with different exponents is an exponential whose exponent is the sum of the two  
exponents. Specifically, if we take the probability p(g) of finding an entity in a state at energy  
g to be proportional to the probable number n(s) of entities in that state, as it certainly  
should be, and use (C-1) to evaluate n(s), we have the function 

p(e) = Be-gig° 	 (C-2)  

where B is proportional to the A in (C-1). This function demonstrates the required prop-
erty since  

p(ei)p(ez) = 
Be-giIeoBe eZlgo = B2 e-(gi±g2)lgo = q(g1 + g2) 

 

(There is no loss of generality in choosing e to be the base of the exponential function instead 
of some other number, such as 10. The reason is that an exponential function using any other 
base b can be transformed into an exponential with base e by the relation bx = ex In b Hence 
changing the base amounts to no more than changing the as-yet-not-evaluated constant go .) 

 Our argument does not actually prove that n(g) is a decreasing, instead of increasing, expo-
nential, but an increasing exponential can be ruled out on physical grounds as its value goes 
to infinity for large values of g. Thus we have verified the general validity of (C-1). 

Now we shall evaluate the constant go in (C-1) 

n(s) = Ae-gle°  

By treating a system containing two different kinds of entities in thermal equilibrium, it is not  
difficult to prove that the value of go does not depend on the type of entities comprising a  
system. Thus we shall use in our argument entities with the simplest properties. Since n(s) is  
the probable number of entities of the system in an energy state at e, the number of entities  
whose energies would be found in the interval from g to e + dg equals n(s) times the number  
of states in that interval. If that number is independent of the value of g (i.e., if the states are  
uniformly distributed in energy), then the number will be proportional to the size de of the  
interval. This is the case if the entities are simple harmonic oscillators, like the coil springs  
mentioned earlier. So the probable number of simple harmonic oscillators with an energy  
from g to e + dg, in an equilibrium system containing many of them, is proportional to  
n(g)dg. If the multiplicative constant A is given the proper value, this probability can be made  
equal to n(s) dg. Then the average energy of one of the oscillators is  

CO  

The integral in the numerator has an integrand which is the energy weighted by the number of  

oscillators having that energy; the integral in the denominator is just the total number of  

oscillators. If we evaluate n(g) from (C-1), we have  

^ 

J Age-gIgOdtô  

1 _  0  

J Ae - eIgOde  

0  



(Note that we do not need to know the actual value of A.) By proceeding in a manner com
pletely analogous to what is done in Example 1-4, except that integrals are involved instead 
of sums, we find 

(C-3) 
But according to the classical law of equipartition of energy, as expressed in (1-16), for simple 
harmonic oscillators in equilibrium at temperature T 

$ = kT (C-4) 
where Boltzmann's constant k 1.38 x 10- 23 joulej°K. Combining (C-3) and (C-4), we have

$0 kT (C-5) 

This result is correct for entities of any type, even though we have obtained it for the particular 
case of simple harmonic oscillators. Therefore we may write (C-1) as 

n($) Ae - G/kT (C-6) 
This is the famous Boltzmann distribution. Since the value of A is not specified, (C-6) actuaily 
tells us about a proportionality: the probable number of entities of a system in equilibrium 
at temperature T that will be in a state of energy$ is proportional to e-G/kT_ Expressed in 
different terms: the probability that the state of energy$ will be occupied by an entity is pro
portional to e-S/kT_ 

The value chosen for the constant A is dictated by convenience. In Chapter 1 we apply the 
Boltzmann distribution to a system of simple harmonic oscillators. As discussed here, in such 
a system n(C) d$ is proportional to the probable number of oscillators with energy in the range 

$ to C + d$, since the states of a simple harmonic oscillator are uniformly distributed in 
energy. Of course, n($) d$ is also proportional to the probability P(<!) d$ of finding a partic
ular one of the oscillators with energy in this range. Thus we have 

P($) Ce -,tr/Go

providing the constant C is properly chosen. This is done by setting 
CO 00 co 

f P($)d$ = f Ce-8180d$ CI e-G/Goag = 1

0 

(C-7) 

0 0 

That is, we define P($) d<! to be the probability of finding a particular simple harmonic 
oscillator with energy from $ to $ + d<!, and so for consistency we must then demand that 
Jo P(I') d$ have the value one because the integral is just the probability of finding it with any 
energy. By evaluating JO e -G/Go d$ in (C-7), and then solving for C, we find C = 1/kT. Then 
we have a special form of the Boltzmann distribution 

which is used in Chapter 1. 

e-S/So 
P(<!) = k:I' (C-8) 
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Useful Constants and 
Conversion Factors 

Quoted to a useful number of significant figures. 

Speed of light in vacuum 
Electron charge magnitude 
Planck's constant 

Boltzmann's constant 

Avogadro's number 
Coulomb's law constant 

Electron rest mass 
Proton rest mass 
Neutron rest mass 
Atomic mass unit (C12  - 12) 

c = 2.998 x 108  m/sec 
e = 1.602 x 10-19  coul 
h = 6.626 x  10-34  joule-sec 
h = h/2n = 1.055 x 10-34  joule-sec 

= 0.6582 x 10-15  eV-sec 
k  =1.381  x 10-23  joule/°K 

= 8.617 x 10-5  eV/ °K 
No  = 6.023 x 1023/mole 
1/47cE0  = 8.988 x 109  nt-m2/coul2  

me  = 9.109 x 10-31  kg 
mp  = 1.672 x 10-27  kg 
mn  = 1.675 x 10-27  kg 
u = 1.661 x 10-27 kg= 

0.5110 MeV/c2 
 = 938.3 MeV/c2 

 = 939.6 MeV/c2 
 931.5 MeV/c2  

Bohr magneton 
Nuclear magneton 
Bohr radius 
Bohr energy 

Electron Compton wavelength 
Fine-structure constant 
kT at room temperature 

µb  = eh/2m,  = 9.27 x 10-24  amp-m2  (or joule/tesla) 
= eh/2mp  = 5.05 x 10-27  amp-m2  (or joule/tesla) 

ao  = 47rEOh2/mee2  = 5.29 x 10-11  m = 0.529 A 
E1 = — mee4/(47cE0)22h2  = —2.17 x 10-18  

joule = —13.6 eV 

Ac = h/mec = 2.43  x  10-12  m = 0.0243 A  
a = e2 /47cEOhc = 7.30 x 10-3  ^ 1/137 
k300°K = 0.0258 eV ̂  1/40 eV 

1 eV = 1.602 x 10-19  joule 

1A =10-10 m 

1 joule = 6.242 x 1018  eV 
1F=10-15 m 	 1 barn (bn) = 10-28  m2 
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