Final Examination for PHYS 6220/7220, 8th December 2025

		First	Last	
Student Name:				
Instructions:				
1) This test is worth a total of 30 points which will be scaled to a weight of 24% of the final letter grade.				
2)) Use more pages as needed for question 13.			
	1.	Define the conditions under which a rigid body is copoint]	alled a symmetrical top. [1	
	2.	Define the conditions under which a rigid body is c	alled a rotor. [1 point]	
	3.	Write an expression for the energy E, in terms of Entop moving under the influence of gravity with one	<u> </u>	
	4.	Write an expression for I_{yy} , the yy component of the continuous body. [1 point]	e inertia matrix, for a	
	5.	Write an expression for I_{yz} , the yz component of the body made of discrete points. [1 point]	e inertia matrix, for a rigid	

6.	The perpendicular axis theorem for the moment of inertia of a rigid body is applicable to what type of body? [1 point]
7.	When is a set of axes on a rigid body called its principal axes? [1 point]
8.	Write an expression for the kinetic energy of a rigid body in terms of its angular velocity ω and its inertia matrix I^M . [1 point]
9.	If the eigen-value of the T ⁻¹ V matrix is zero, what kind of motion will occur in a small oscillations problem? Answer the same question but now when the eigenvalue is negative instead of zero. [2 points]
10.	Write an expression for the element V_{ij} of the V matrix in a small oscillations problem, in terms of the potential $V(\{q_i\})$? [1 point]
11.	Write the most general solution for a single simple harmonic oscillator with frequency ω . [1 point]
12.	In a set of N coupled simple harmonic oscillators what is the maximum possible number of normal mode frequencies? [1 point]

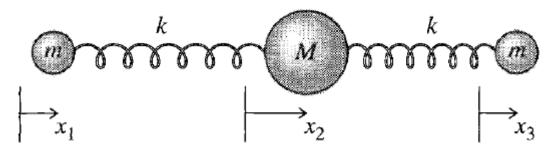


Figure 1. Linear triatomic molecule.

- 13. Consider the system shown in Figure 1, with two identical particles each of mass m connected by two identical springs to a single atom of mass M. Assume that the system is confined to moving in one dimension. Let $\lambda = M/m$. The total potential energy is given by $V = \frac{k}{2}((x_1 x_2)^2 + (x_2 x_3)^2)$.
- (1) Write an expression for the total kinetic energy (T) in terms of λ . [1 point]
- (2) Consider small oscillations in x_1 , x_2 , and x_3 . Write the appropriate equations for the kinetic energy matrix T and the potential energy matrix V. [2 points]
- (3) Set m = k = 1, in solving (3) (6). Write the appropriate matrix equations to find the square of the eigenfrequencies ω^2 . It will have three values ω_1^2 , ω_2^2 , and ω_3^2 . Find ω_1^2 , ω_2^2 , and ω_3^2 . [3 points]
- (4) From these frequencies, find the normalized eigenvectors $\mathbf{a_1} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix}$ and $\mathbf{a_3} = \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$. [6 points]
- (5) From these eigenvectors, draw a figure showing the normal modes of motion with arrows of appropriate magnitude and direction. [2 points]
- (6) Find the most general solution for $x_1(t)$, $x_2(t)$, and $x_3(t)$. [3 points]