Examination 2 for PHYS 6220/7220, 12th November 2025

C/	First	Last		
St	Student Name:			
Instructions:				
1)	This test is worth a total of 20 points which will be scaled to a weight of 20% of the final letter grade.			
2)	Use more pages as needed for ques	stion 11.		
1.	How is the time dependence of H related to	o that of L? [1 point]		
2.	How is [A, B] related to [B, A]? [1 point]			
3.	Write equations for the fundamental Poisso	on brackets? [1 point]		
4.	If a particle is only under the influence of a quantity of the particle is conserved? What points]			

5.	In a central force problem, it is known that at a certain time the radial coordinate r of the particle is at its maximum. What physical quantity is zero at that instance? [1 point]
6.	Write the differential equation for the orbit of a particle, in a central force field. [1 point]
7.	Write the integral equation for the orbit of a particle, in a central force field. [1 point]
8.	For a central potential $V(r) = -k/r$, $k > 0$, write the equation of the orbit when its energy is negative. State the two special shapes that occur. [2 points]
9.	What is the maximum number for the degrees of freedom of a rigid body? [1 point]

10. Write the definition of an orthogonal matrix. [1 point]

11. Consider two Cartesian coordinate systems which both have the same origin but the axes of S' are rotated with respect to S. Coordinate system S has unit vectors along its XYZ axes as:

$$\hat{\imath} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \hat{\jmath} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Coordinate system S' has unit vectors along its X'Y'Z' axes as:

$$\hat{\imath}' = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \hat{\jmath}' = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \hat{k}' = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.$$

- (1) Find the rotation matrix $\overline{R_1}$ corresponding to the rotation from S to S'. [3 points]
- (2) Find the rotation matrix $\overline{R_2}$ corresponding to the rotation from S' to S. [3 points]
- (3) An arbitrary vector is given by its components in the S' frame as $\begin{bmatrix} a \\ b \end{bmatrix}$. Derive its components in the S frame. [2 points]