Examination 1 for PHYS 6220/7220, 17th October 2025

St	First Student Name:	Last	
Instructions:			
1)	This test is worth a total of 19 points which will be scaled to a weight of 18% of the final letter grade.		
2)	2) Use more pages as needed for question	10.	
1.	 How is the Rayleigh dissipation function related system? [1 point] 	to the rate of energy loss from the	
2.	 Write an expression for the Lagrangian for a part field consisting of an electric field E and magnet may use to these fields. [2 points] 		
3.	3. Define the δ derivative of a functional. [1 point]		
4.	4. State Hamilton's principle. [1 point]		
5.	5. Under what conditions is the energy function h a	as constant? [1 point]	

6.	When can one say that the energy function h equals the total energy in a system? [1 point]
7.	Write down Hamilton's equations for a system of N particles. [2 points]
8.	When a particular generalized q_i coordinate is cyclic what quantity is preserved? Write an expression for it in terms of the Lagrangian of the system. [1 point]
9.	The method of Lagrange's un-determined multipliers helps us obtain some physical quantity which would otherwise not be possible to obtain from Euler-Lagrange's equations. What is that physical quantity? [1 point]
10.	A particle of mass m under a constant gravitational field, with acceleration due to gravity is of magnitude g, is constrained to move on the surface of a sphere of radius b.
	 (1) Choose appropriate generalized coordinates and clearly define them with a figure and words. [2 points] (2) Write the Lagrangian for the system. [3 points] (3) Note any symmetry or cyclic coordinates and hence the corresponding constants of motion. [1 point] (4) Note in words any other conserved quantities and write an expression for them in terms of generalized coordinates and momenta. [2 points]