$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { then } \\
& A_{B} \\
& A^{-1}=\underbrace{\frac{1}{a d-b c}}_{\substack{\text { Inverse } \\
\text { of } A}}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& \begin{array}{c}
\text { Determinant } \\
\text { of } A
\end{array}
\end{aligned}
$$

Note: A^{-1} exists only when ad - $\mathrm{bc} \neq 0$
Matrix $\mathrm{A}^{-1}=$

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)^{-1} \quad \text { (matrix inverse) }
$$

$\left(\begin{array}{cccc}\frac{f h-e i}{-a e i+a f h+b d i-b f g-c d h+c e g} & \frac{c h-b i}{a e i-a f h-b d i+b f g+c d h-c e g} & & \frac{c e-b f}{-a e i+a f h+b d i-b f g-c d h+c e g} \\ \frac{c g-a i}{a e i-a f h-b d i+b f g+c d h-c e g} & \frac{c g}{-a e i+a f h+b d i-b f g-c d h+c e g} & \frac{c d-a f}{a e i-a f h-b d i+b f g+c d h-c e g} \\ \frac{e g-d h}{-a e i+a f h+b d i-b f g-c d h+c e g} & \frac{b g-a h}{a e i-a f h-b d i+b f g+c d h-c e g} & \frac{b d-a e}{-a e i+a f h+b d i-b f g-c d h+c e g}\end{array}\right)$

Note that there are only 2 common denominators in each matrix element $\pm D$, where
$D=c e g-c d h-b f g+b d i+a f h-a e i$, and $D \neq 0$.

