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Chapter 4 The Kinematics of Rigid Body Motion

v

FIGURE 4.7 The rotations defining the Eulerian angles.

terclockwise by an angle v about the ¢" axis to produce the desired x'y'z system
of axes. Figure 4.7 illustrates the various stages of the sequence. The Euler angles
. ¢, and ¥ thus completely specify the orientation of the x'y'z’ system relative
to the xyz and can therefore act as the three needed generalized coordinates. *

The elements of the complete transformation A can be obtained by writing the
matrix as the triple product of the separale rotations, each of which has a relatively
simple matrix form. Thus, the initial rotation about 7 can be described by a matrix
[

where & and x stand for column matrices, Similarly, the transformation from én¢
to £'7'¢’ can be described by a matrix C,

*A number of minor varistions will be found in the literature even within this canvention, The differ-
ences are not very great, but they are often sufficient to frustrare easy comparison of the end formulae.
such as the matrix elements. Greatest confusion, perhaps. arises from the occasional use of left-handed
coordinate systems.
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Chapter 4 The Kinematics of Rigid Body Motion

ters of the rotation—the angle of rotation and the direction cosines of the axis of
rotation.

With the help of some simple vector algebra, we can derive such a represen-
tation. For this purpose, it is convenient to treat the transformation in its active
sense, i.e., as one that rotates the vector in a fixed coordinate system (cf. Sec-
tion 4.2 ). Recall that a counterclockwise rotation of the coordinate system then
appears as a clockwise rotation of the vector. In Fig. 4. S(a ) the initial position of
the vector r is denoted by O OP and the final position r’ by 00, while the unit
vector along the axis of rotation is denoted b} n. The distance between O and N
has the magnitude n - 1, so that the vector ON can be written as n(n - r). Fig-
ure 4.8(b) sketches the vectors in the plane normal to the axis of rotation. The
vector N P can be described also as ¥ — n(n - r), but its magnitude is the same as
that of the vectors @ and r x n. To obtain the desired relation between r’ and r,
we construct r’ as the sum of three vectors:

—ON+NV+VD
or
=nn-r)+[r—nmn-r)lcos® + (r x n)sin d.
A slight rearrangement of terms leads to the final result:
=rcos® +nm:r)(l —cosd)+ (r x n)sin . (4.62)

Equation (4.62) will be referred to as the rotation formula. Note that Eq. (4.62)
holds for any rotation, no matter what its magnitude, and thus is a finite-rotation
version (in a clockwise sense) of the description given in Section 2.6, for the
change of a vector under infinitesimal rotation. (cf. also Section 4.8.)

(]
: (b) The plane normal to
{a) Overall view the axis of rotation

FIGURE 4.8 Vector diagrams for derivation of the rotation formula.
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