solution, the obvious iteration relation is

$$\psi_n = \omega t + e \sin \psi_{n-1}.$$

Using this iteration procedure, find the analytic form for an expansion of ψ in powers of e at least through terms in e^3 .

- 26. Earth's period between successive perihelion transits (the "anomalistic year") is 365.2596 mean solar days, and the eccentricity of its orbit is 0.0167504. Assuming motion in a Keplerian elliptical orbit, how far does the Earth move in angle in the orbit, starting from perihelion, in a time equal to one-quarter of the anomalistic year? Give your result in degrees to an accuracy of one second of arc or better. Any method may be used, including numerical computation with a calculator or computer.
- 27. In hyperbolic motion in a 1/r potential, the analogue of the eccentric anomaly is F defined by

$$r = a(e \cosh F - 1),$$

where a(e - 1) is the distance of closest approach. Find the analogue to Kepler's equation giving t from the time of closest approach as a function of F.

- 28. A magnetic monopole is defined (if one exists) by a magnetic field singularity of the form $\mathbf{B} = b\mathbf{r}/r^3$, where b is a constant (a measure of the magnetic charge, as it were). Suppose a particle of mass m moves in the field of a magnetic monopole and a central force field derived from the potential V(r) = -k/r.
 - (a) Find the form of Newton's equation of motion, using the Lorentz force given by Eq. (1.60). By locking at the product $\mathbf{r} \times \dot{\mathbf{p}}$ show that while the mechanical angular momentum is not conserved (the field of force is noncentral) there is a conserved vector

$$\mathbf{D} = \mathbf{L} - \frac{qb}{c} \frac{\mathbf{r}}{r}.$$

- (b) By paralleling the steps leading from Eq. (3.79) to Eq. (3.82), show that for some f(r) there is a conserved vector analogous to the Laplace-Runge-Lenz vector in which D plays the same role as L in the pure Kepler force problem.
- 29. If all the momentum vectors of a particle along its trajectory are translated so as to start from the center of force, then the heads of the vectors trace out the particle's *hodograph*, a locus curve of considerable antiquity in the history of mechanics, with something of a revival in connection with space vehicle dynamics. By taking the cross product of L with the Laplace-Runge-Lenz vector A, show that the hodograph for elliptical Kepler motion is a circle of radius mk/l with origin on the y axis displaced a distance A/l from the center of force.
- **30.** What changes, if any. would there be in Rutherford scattering if the Coulomb force were attractive, instead of repulsive?
- 31. Examine the scattering produced by a repulsive central force $f = kr^{-3}$. Show that the differential cross section is given by

$$\sigma(\Theta) d\Theta = \frac{k}{2E} \frac{(1-x) dx}{x^2 (2-x)^2 \sin \pi x},$$

where x is the ratio of Θ/π and E is the energy.