field, neglecting atmospheric friction, is

$$m\frac{dv}{dt} = -v'\frac{dm}{dt} - mg$$

where *m* is the mass of the rocket and v' is the velocity of the escaping gases relative to the rocket. Integrate this equation to obtain *v* as a function of *m*, assuming a constant time rate of loss of mass. Show, for a rocket starting initially from rest, with v' equal to 2.1 m/s and a mass loss per second equal to 1/60th of the initial mass, that in order to reach the escape velocity the ratio of the weight of the fuel to the weight of the empty rocket must be almost 300!

- 14. Two points of mass m are joined by a rigid weightless rod of length l, the center of which is constrained to move on a circle of radius a. Express the kinetic energy in generalized coordinates.
- 15. A point particle moves in space under the influence of a force derivable from a generalized potential of the form

$$U(\mathbf{r}, \mathbf{v}) = V(r) + \boldsymbol{\sigma} \cdot \mathbf{L},$$

where \mathbf{r} is the radius vector from a fixed point, \mathbf{L} is the angular momentum about that point, and $\boldsymbol{\sigma}$ is a fixed vector in space.

- (a) Find the components of the force on the particle in both Cartesian and spherical polar coordinates, on the basis of Eq. (1.58).
- (b) Show that the components in the two coordinate systems are related to each other as in Eq. (1.49).
- (c) Obtain the equations of motion in spherical polar coordinates.
- 16. A particle moves in a plane under the influence of a force, acting toward a center of force, whose magnitude is

$$F=\frac{1}{r^2}\left(1-\frac{\dot{r}^2-2\ddot{r}r}{c^2}\right),$$

where r is the distance of the particle to the center of force. Find the generalized potential that will result in such a force, and from that the Lagrangian for the motion in a plane. (The expression for F represents the force between two charges in Weber's electrodynamics.)

- 17. A nucleus, originally at rest, decays radioactively by emitting an electron of momentum 1.73 MeV/c, and at right angles to the direction of the electron a neutrino with momentum 1.00 MeV/c. (The MeV, million electron volt, is a unit of energy used in modern physics, equal to 1.60×10^{-13} J. Correspondingly, MeV/c is a unit of linear momentum equal to 5.34×10^{-22} kg·m/s.) In what direction does the nucleus recoil? What is its momentum in MeV/c? If the mass of the residual nucleus is 3.90×10^{-25} kg what is its kinctic energy, in electron volts?
- 18. A Lagrangian for a particular physical system can be written as

$$L' = \frac{m}{2} \left(a\dot{x}^2 + 2b\dot{x}\dot{y} + c\dot{y}^2 \right) - \frac{K}{2} \left(ax^2 + 2bxy + cy^2 \right),$$

where a, b, and c are arbitrary constants but subject to the condition that $b^2 - ac \neq 0$.