system by the prescription

$$
L=T-U
$$

independent of the choice of generalized coordinates, the energy function h depends in magnitude and functional form on the specific set of generalized coordinates. For one and the same system, various energy functions h of different physical content can be generated depending on how the generalized coordinates are chosen.

The most common case that occurs in classical mechanics is one in which the kinetic energy terms are all of the form $m \dot{q}_{i}^{2} / 2$ or $p_{i}^{2} / 2 m$ and the potential energy depends only upon the coordinates. For these conditions, the energy function is both conserved and is also the total energy.

Finally, note that where the system is not conservative, but there are frictional forces derivable from a dissipation function \mathcal{F}, it can be easily shown that \mathcal{F} is related to the decay rate of h. When the equations of motion are given by Eq. (1.70), including dissipation, then Eq. (2.52) has the form

$$
\frac{d h}{d t}+\frac{\partial L}{\partial t}=\sum_{j} \frac{\partial \mathcal{F}}{\partial \dot{q}_{j}} \dot{q}_{j}
$$

By the definition of \mathcal{F}, Eq. (1.67), it is a homogeneous function of the \dot{q} 's of degree 2. Hence, applying Euler's theorem again, we have

$$
\begin{equation*}
\frac{d h}{d t}=-2 \mathcal{F}-\frac{\partial L}{\partial t} \tag{2.59}
\end{equation*}
$$

If L is not an explicit function of time, and the system is such that h is the same as the energy, then Eq. (2.59) says that $2 \mathcal{F}$ is the rate of energy dissipation,

$$
\begin{equation*}
\frac{d E}{d t}=-2 \mathcal{F} \tag{2.60}
\end{equation*}
$$

a statement proved above (cf. Sec. 1.5) in less general circumstances.

DERIVATIONS

1. Complete the solution of the brachistochrone problem begun in Section 2.2 and show that the desired curve is a cycloid with a cusp at the initial point at which the particle is released. Show also that if the particle is projected with an initial kinetic energy $\frac{1}{2} m v_{0}^{2}$ that the brachistochrone is still a cycloid passing through the two points with a cusp at a height z above the initial point given by $v_{0}^{2}=2 g z$.
2. Show that if the potential in the Lagrangian contains velocity-dependent terms. the canonical momentum corresponding to a coordinate of rotation θ of the entire system
