Effects of short-range order in phase equilibria and opto-electronic

properties of ternary alloy Zn_xCd_{1-x}Te

B. B. Dumre^a, R. J. Ellingson^a, S. V. Khare^{a,*}

^aDepartment of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, OH 43606, USA *Corresponding Author: bishalbabu.dumre@rockets.utoledo.edu

Supplementary Material

B. B. Dumre, R. J. Ellingson, S. V. Khare, Solar Energy Materials and Solar Cells 248, 111971, Supplementary Material (2022)

Table S1: Equilibrium lattic	ce parameters and formati	ion energies of Zn _x Cd ₁₋₂	Te alloys per formula unit
in B3 crystal structure, cor	nputed using GGA funct	ional. Values from the	literature are listed where
Material	Lattice Constant a (Å)	Volume V (Å ³)	Formation Energy (eV)

Material	Lattice Constant a (Å)Volume V (Å3)		Formation Energy (eV)
CdTe	6.62, 6.48 ^a , 6.54 ^b	290.12	- 0.96
Zn _{0.25} Cd _{0.75} Te	6.52	277.17	- 0.95
Zn _{0.50} Cd _{0.50} Te	6.42, 6.365°	264.61	- 0.95
Zn _{0.75} Cd _{0.25} Te	6.30	250.05	- 0.95
ZnTe	6.18, 6.08 ^d , 6.1026 ^e	236.03	- 0.97

available.

^aTheoretical Ref. [1] ^bExperimental Ref. [2]

^cExperimental Ref. [3]

^dTheoretical Ref. [4]

^eExperimental Ref. [5]

Table S2: Electronic band gaps of Zn_xCd_{1-x} Te alloys, calculated implementing GGA and hybrid HSEO6 functionals. Values from the literature are listed where available.

Material	Band Gap, Direct (eV)			
	GGA	HSEO6	Other Works	
CdTe	0.94	1.54	1.31 ^a , 1.50 ^b	
Zn _{0.25} Cd _{0.75} Te	0.99	1.49	-	
Zn _{0.50} Cd _{0.50} Te	1.05	1.60	-	
Zn _{0.75} Cd _{0.25} Te	1.15	1.77	-	
ZnTe	1.28	2.39	2.24 ^{c,d} , 2.39 ^{e,f}	

^aTheoretical (FPLAW, EV-GGA) Ref. [6]

^bExperimental Ref. [7]

^cTheoretical (LDA) Ref. [1]

^dExperimental Ref. [8]

^eExperimental Ref. [9]

^fExperimental Ref. [10]

Table S3: Average and standard deviation of band structure effective masses (m^*) of electrons and holes of $Zn_xCd_{1-x}Te$ alloys. Values are given in units of electron mass (m_o) .

Material	Electron Effective Mass (m_e^*)		Hole Effective Mass (m_h^*)	
	Average	Standard Deviation	Average	Standard Deviation
CdTe	1.33	1.01	0.17	0.10
Zn _{0.25} Cd _{0.75} Te	1.56	0.88	0.35	0.26
Zn0.50Cd0.50Te	1.74	1.05	0.37	0.28
Zn _{0.75} Cd _{0.25} Te	1.53	0.94	0.40	0.32
ZnTe	1.20	0.94	0.17	0.10

Table S4: Charge transfer from Cd and Zn to Te in Zn_xCd_{1-x} Te alloys computed using the Bader charge segregation scheme [11-14]. Values are given in elementary charge units.

Material	Cd	Zn
CdTe	0.52	N/A
Zn _{0.25} Cd _{0.75} Te	0.51	0.52
Zn _{0.50} Cd _{0.50} Te	0.51	0.52
Zn _{0.75} Cd _{0.25} Te	0.50	0.51
ZnTe	N/A	0.50

Material	Dielectric Constant	
CdTe	5.87	
Zn _{0.25} Cd _{0.75} Te	6.36	
Zn _{0.50} Cd _{0.50} Te	6.45	
Zn _{0.75} Cd _{0.25} Te	6.53	
ZnTe	6.04	

Table S5: Dielectric constants of Zn_xCd_{1-x} Te alloys calculated using the hybrid HSEO6 functional.

Table S6: Charge carrier mobility, Urbach Energy, and Exciton Binding Energy of $Zn_xCd_{1-x}Te$ alloys calculated using the hybrid HSEO6 functional.

Material	Hole Mobility (cm ² /Vs)	Electron Mobility (cm ² /Vs)	Urbach Energy (meV)	Exciton Binding Energy (meV)
CdTe	103.42, 100ª	13.21	18.94, 15°	45.01
Zn _{0.25} Cd _{0.75} Te	50.23	11.27	21.97	96.46
Zn0.50Cd0.50Te	47.52	10.10	20.72	97.86
Zn0.75Cd0.25Te	43.95	11.49	21.17	83.09
ZnTe	103.42, 100 ^b	14.65	23.08	91.62

^aExperimental Ref. [15] (At 225 K temperature) ^bExperimental Ref. [16] (At 275 K temperature) ^cExperimental Ref. [17]

B. B. Dumre, R. J. Ellingson, S. V. Khare, Solar Energy Materials and Solar Cells 248, 111971, Supplementary Material (2022)

Figure S1: a) Formation energies, and b) lattice constants of $Zn_xCd_{1-x}Te$ alloys calculated using the GGA functional. Here, points denote calculated values whereas curves sketch fitting based on a bowing parameter defined in Eq. (3).

B. B. Dumre, R. J. Ellingson, S. V. Khare, Solar Energy Materials and Solar Cells 248, 111971, Supplementary Material (2022)

Figure S2: Box-and-whisker plots displaying the distribution of various first nearest neighbor bond lengths (Zn-Te, Cd-Te, Zn-Cd, Zn-Zn, Cd-Cd and Te-Te) at intermediate Zn concentrations (x = 0.25, 0.50, 0.75) within disordered Zn_xCd_{1-x}Te alloys, simulated using SQS. Horizontal red lines denote the median whereas the green diamonds denote the outliers.

Fig S3: On-site projected electronic density of states (PDOS) per formula unit of $Zn_xCd_{1-x}Te$ alloys calculated using the HSE06 functional. The Fermi level is set to 0 eV.

Figure S4: Projected Crystal Orbital Hamiltonian Populations (-pCOHP) of nearest-neighbors' interactions of $Zn_xCd_{1-x}Te$ alloys. All other covalent interactions are negligible compared to Cd-Te and

Zn-Te pairs displayed here. Positive and negative values of -pCOHP correspond to bonding and antibonding interactions respectively. The Fermi level is set to 0 eV.

B. B. Dumre, R. J. Ellingson, S. V. Khare, Solar Energy Materials and Solar Cells 248,

Figure S5: Complex dielectric functions of $Zn_xCd_{1-x}Te$ alloys computed utilizing the hybrid HSEO6 functional. Photon energies shown are in the visible-UV range.

B. B. Dumre, R. J. Ellingson, S. V. Khare, Solar Energy Materials and Solar Cells 248, 111971, Supplementary Material (2022)

Figure S6: Variation of complex dielectric functions of $Zn_xCd_{1-x}Te$ alloys, calculated using the hybrid HSEO6 functional. Photon energies shown are in the range (0-15) eV.

B. B. Dumre, R. J. Ellingson, S. V. Khare, Solar Energy Materials and Solar Cells 248, 111971, Supplementary Material (2022)

Figure S7: Dielectric constants of $Zn_xCd_{1-x}Te$ alloys calculated using the hybrid HSEO6 functional. Here, points denote calculated values whereas curves sketch fitting based on a bowing parameter defined in Eq. (3).

References:

- 1. Huang, M.-Z. and W.Y. Ching, *Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response.* Physical Review B, 1993. **47**(15): p. 9449-9463.
- Mangalhara, J.P., R. Thangaraj, and O.P. Agnihotri, STRUCTURAL, OPTICAL AND PHOTOLUMINESCENCE PROPERTIES OF ELECTRON BEAM EVAPORATED CdSe_{1-x}Te_x FILMS. Solar energy materials, 1989. 19(3-5): p. 157-165.
- 3. Wang, Y., et al., Synthesis and optical properties of composition-tunable and water-soluble $Zn_xCd_{1-x}Te$ alloyed nanocrystals. Journal of Crystal Growth, 2007. **308**(1): p. 19-25.
- 4. Korozlu, N., K. Colakoglu, and E. Deligoz, *Structural, electronic, elastic and optical properties of Cd_xZn_{1-x}Te mixed crystals.* Journal of Physics: Condensed Matter, 2009. **21**(17): p. 175406.
- 5. Wu, Y., et al., *Growth of Cd*_{1-x}*Zn*_x*Te thin films with high Zn content by close-spaced sublimation.* Vacuum, 2016. **132**: p. 106-110.
- 6. Reshak, A.H., et al., *Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe_{1-x}Te_x: An ab initio study. Journal of Alloys and Compounds, 2011. 509(24): p. 6737-6750.*
- 7. Compaan, A.D., et al., *PROPERTIES OF PULSED LASER DEPOSITED CdS_xTe_{1-x} FILMS ON GLASS*. MRS Proceedings, 1996. **426**: p. 367.
- 8. Oklobia, O., G. Kartopu, and S.J.C. Irvine, *Properties of Arsenic–Doped ZnTe Thin Films as a Back Contact for CdTe Solar Cells*. Materials, 2019. **12**(22): p. 3706.
- 9. Harrison, W.A., *ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The Physics of the Chemical Bond*. 2012: Courier Corporation.
- 10. Noda, D., et al., *Zn_xCd_{1-x}Te Epitaxial Growth by Remote Plasma Enhanced MOCVD Method.* MRS Online Proceedings Library, 1997. **487**(1): p. 45-49.
- 11. Henkelman, G., A. Arnaldsson, and H. Jónsson, *A fast and robust algorithm for Bader decomposition of charge density.* Computational Materials Science, 2006. **36**(3): p. 354-360.
- 12. Sanville, E., et al., *Improved grid-based algorithm for Bader charge allocation*. Journal of Computational Chemistry, 2007. **28**(5): p. 899-908.
- 13. Tang, W., E. Sanville, and G. Henkelman, *A grid-based Bader analysis algorithm without lattice bias.* Journal of Physics: Condensed Matter, 2009. **21**(8): p. 084204.
- 14. Yu, M. and D.R. Trinkle, *Accurate and efficient algorithm for Bader charge integration.* The Journal of Chemical Physics, 2011. **134**(6): p. 064111.
- 15. Turkevych, I., et al., *High-temperature electron and hole mobility in CdTe.* Semiconductor Science and Technology, 2002. **17**(10): p. 1064-1066.
- 16. Aven, M. and B. Segall, *Carrier Mobility and Shallow Impurity States in ZnSe and ZnTe.* Physical Review, 1963. **130**(1): p. 81-91.
- 17. Chantana, J., et al., *Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells.* Solar Energy Materials and Solar Cells, 2020. **210**: p. 110502.