Universal link of magnetic exchange and structural behavior under pressure in chromium spinels

Ilias Efthimiopoulos^{*a,b,1,2*}, Indiras Khatri^{*c,2*}, Zhi T. Y. Liu^{*c*}, Sanjay V. Khare^{*c*}, Pankaj Sarin^{*d*},

Vladimir Tsurkan^e, Alois Loidl^e, Dongzhou Zhang^f, and Yuejian Wang^{a,1}

^aDepartment of Physics, Oakland University, Rochester, Michigan 48309, USA

^bDeutsches GeoForschungsZentrum, Section 4.3, Telegrafenberg, 14473, Potsdam, Germany

^cDepartment of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, USA

^dSchool of Materials Science and Engineering, Oklahoma State University, Tulsa, Oklahoma 74106, USA

^eE. P. V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany ^fPartnership for Extreme Crystallography, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

SUPPLEMENTARY INFORMATION

Supplementary Information Text

We present here the complete set of experimental structural parameters, as well as lists of detailed structural and magnetic data used for our DFT calculations. An overview Table for all relevant spinels are supplied also for convenience.

Additional details on methods

XRD refinements. Most of the XRD patterns were fitted with the Rietveld method. The refined parameters in each case were the lattice parameters, the atomic coordinates (Mn, Ni, and Cr reside in fixed positions in the ambient-pressure structures), and the profile parameters of the Stephens peak function¹, whereas the background was modelled with a Chebyshev polynomial. Since the diffractograms showed textured rings, we employed a spherical harmonics correction² in order to account for the preferred orientation of the powder particles. All of the Rietveld refinements were performed with spherical harmonic orders of 6 for both phases. The weighted residuals of the Rietveld fits wR_p and the reduced χ^2 parameters ("goodness of the fit") varied between 0.5 - 1.5 % and 0.01 - 0.2 for all XRD refinements, respectively. We should mention that the isotropic atomic displacement parameters U_{iso} for both the $I4_1/amd$ and $Fd\overline{3}m$ phases were found to be pressure insensitive, hence they were fixed to their refined ambient-pressure values (see footnotes). Finally, the high-pressure tetragonal modifications of MnCr₂O₄ were fitted with the Le Bail method, i.e. only the lattice parameters were extracted.

DFT calculations. The density function theory (DFT) based calculations have been performed with the Vienna Ab initio simulation package³⁻⁶. Potentials of Cr_pv, Mn_pv, Fe, Co, Ni_pv, Cu_pv and O using projector-augmented wave method^{7,8} were selected, with the Perdew-Burke-Ernzerhof PBE generalized gradient approximation (GGA)⁹. The U values were chosen to be 3.7 eV for Cr, 3.9 eV for Mn, 5.3 eV for Fe, 3.32 eV for Co, and 6.2 eV for Ni^{10,11}. The plane wave cutoff energy was chosen to be 550 eV to ensure lattice parameter relaxations. The k-point meshes were created with k points per reciprocal atoms (KPPRA) of 4000. During the electronic iterations, Gaussian smearing was used with a sigma value as small as 0.05 eV, until the convergence criterion of 10-4 eV was reached. We note that we used the experimental structure of the $I4_1/amd$ tetragonal phase for both NiCr₂O₄ and CuCr₂O₄ for the DFT calculations. To determine the magnetic exchange interactions parameters are then obtained by using the classical Heisenberg model.

$$\Delta \mathbf{E} = -\sum_{\mathbf{i},\mathbf{j}} \mathbf{J}_{\mathbf{i}\mathbf{j}} \widehat{\mathbf{e}}_{\mathbf{i}} \cdot \widehat{\mathbf{e}}_{\mathbf{j}}$$

where, J_{ij} is the magnetic exchange interactions parameter and $\hat{e_1}$ and $\hat{e_j}$ are the unit vectors pointing in the direction of the magnetic moments at the sites i and j, respectively.

Fig. S1: (Left) Enhanced view of the 7.6°-8.8° 20 region of the MnCr₂O₄ XRD pattern at 8.3 GPa. Dots stand for the measured spectra, the red solid lines represent the refinements, and their difference is drawn as blue lines. Vertical ticks mark Bragg peak positions. Notice the better refinement result assuming a tetragonal structure (in this case: SG $I4_1/amd$) over the original cubic one (SG $Fd\bar{3}m$). (Right) Evolution of the full width at half-maximum (FWHM) for selected Bragg peaks of MnCr₂O₄ as a function of pressure. The vertical dashed line represents the change in the pressure rate, whereas the dotted lines serve as guides for the eye.

Fd3m ^a	P (GPa)	a (Å)	$V(\text{\AA}^3)$	O-u	Mn-O (Å)	Cr-O (Å)
	Ambient	8.4431(1)	601.9	0.2642(2)	2.04(1)	2.00(1)
	4.4	8.3830(1)	589.1	0.2634(2)	2.01(1)	1.99(1)
	6.9	8.3572(1)	583.7	0.2640(2)	2.01(1)	1.98(1)
Tetragonal HP 1	P (GPa)	a (Å)	с (Å)	<i>c/a</i> √2	<i>V</i> (Å ³)	
	8.3	5.9510(1)	8.1862(5)	0.973	289.9	
	10.9	5.9376(1)	8.1452(5)	0.97	287.2	
	13	5.9302(1)	8.1005(5)	0.966	284.8	
	14.9	5.9250(1)	8.0619(5)	0.962	283	
	17.2	5.9172 (1)	8.0245(5)	0.959	281	
	19.2	5.9100(1)	7.9825(5)	0.955	278.8	
Tetragonal HP 2	P (GPa)	a (Å)	с (Å)	<i>c/a</i> √2	V (Å ³)	
	21.1	6.1411(5)	7.3497(7)	0.846	277.2	
	24.3	6.1388(5)	7.2519(7)	0.835	273.3	
	26.1	6.1365(5)	7.2007(7)	0.83	271.1	
	29.2	6.1341(5)	7.1395(7)	0.823	268.6	
	31.7	6.1321(5)	7.0709(7)	0.815	265.9	
	34.1	6.1302(5)	7.0113(7)	0.809	263.5	

Table S1: Structural data for the $Fd\overline{3}m$ (Z = 8) and the high-pressure tetragonal phases (Z = 4) of MnCr₂O₄.

Table S1. Footnotes

^aWyckoff positions: Mn (8a: 0.125, 0.125, 0.125), Cr (16d: 0.5, 0.5, 0.5), O (32e: u, u, u) Isotropic atomic displacement parameters U_{iso} : $U_{iso,Mn} = 0.01(1) \text{ Å}^2$, $U_{iso,Cr} = 0.03(1) \text{ Å}^2$, $U_{iso,O} = 0.04(1) \text{ Å}^2$

Phase	P (GPa)	a (Å)	$V(\text{\AA}^3)$	Energy (eV)		
Fd3m	-5.85	8.7163	660.00	-445.54		
	-3.11	8.6647	647.78	-445.88		
	-0.10	8.6060	635.56	-446.00		
	3.21	8.5548	623.33	-445.89		
	6.86	8.4967	611.11	-445.51		
	10.87	8.4407	598.89	-444.83		
	15.29	8.3881	586.67	-443.83		
	20.17	8.3320	574.44	-442.48		
	25.55	8.2672	562.22	-440.75		
	31.50	8.2225	550.00	-438.57		
Phase	P (GPa)	<i>a</i> (Å)	c (Å)	$c/a\sqrt{2}$	$V(\text{\AA}^3)$	Energy (eV)
$I4_1/amd$	-6.93	6.1832	8.7119	0.9963	333.07	-222.646
AFM-MnCr	-4.59	6.1479	8.6629	0.9964	327.43	-222.851
	-2.03	6.1129	8.6114	0.9961	321.79	-222.970
	0.79	6.0798	8.5526	0.9947	316.14	-222.992
	3.88	6.0423	8.5046	0.9953	310.50	-222.910
	7.28	6.0053	8.4533	0.9954	304.86	-222.711
	11.02	5.9691	8.3977	0.9948	299.21	-222.389
	15.13	5.9318	8.3432	0.9946	293.57	-221.931
	19.65	5.8936	8.2894	0.9946	287.93	-221.325
	24.63	5.8541	8.2369	0.9949	282.29	-220.547
	30.13	5.8135	8.1855	0.9956	276.64	-219.578
Phase	P (GPa)	a (Å)	c (Å)	$c/a\sqrt{2}$	$V(\text{\AA}^3)$	Energy(eV)
$I4_1/amd$	-5.40	6.1864	8.6988	0.9943	333.07	-222.622
AFM-Cr	-3.61	6.1503	8.6521	0.9947	327.43	-222.828
	-1.55	6.1168	8.5967	0.9938	321.79	-222.948
	0.83	6.0793	8.5494	0.9944	316.14	-222.970
	3.55	6.0454	8.4902	0.9931	310.50	-222.887
	6.67	6.0064	8.4450	0.9942	304.86	-222.688
	10.24	5.9701	8.3895	0.9937	299.21	-222.365
	14.31	5.9442	8.3013	0.9875	293.57	-221.910
	18.96	5.9210	8.2093	0.9804	287.93	-221.304
	24.27	5.8913	8.1359	0.9765	282.29	-220.526
	30.33	5.8775	8.0072	0.9633	276.64	-219.576
	34.07	6.0655	7.4211	0.8651	273.50	-219.111
	37.24	6.1307	7.1943	0.8298	271.00	-218.717

Table S2: DFT-calculated structural parameters for the $Fd\overline{3}m$ (Z = 8) and the high-pressure tetragonal modifications (Z = 4) of MnCr₂O₄.

Table S3: Construction parameters (lattice vectors and Fractional coordinates) for special quasi-random
paramagnetic $MnCr_2O_4$ supercell. The first half of Mn and Cr cations are set spin-up, and the
second half spin-down.

Lattice Vector (Å)	X	у	Z
a	8.49	0	0
b	0	8.49	0
c	0	0	8.49

	Fraction	nal Coordinate	es	Fractional Coordinates						
Ions	u ₁	u ₂	U 3	Ions	u ₁	u ₂	U3			
Mn	0.000000	0.000000	0.500000	0	0.113711	0.886289	0.113711			
Mn	0.750000	0.750000	0.750000	0	0.113711	0.113711	0.886289			
Mn	0.000000	0.500000	0.000000	0	0.886289	0.613711	0.613711			
Mn	0.750000	0.250000	0.250000	0	0.886289	0.386289	0.386289			
Mn	0.500000	0.000000	0.000000	0	0.636289	0.636289	0.363711			
Mn	0.250000	0.750000	0.250000	0	0.136289	0.363711	0.136289			
Mn	0.500000	0.500000	0.500000	0	0.863711	0.636289	0.136289			
Mn	0.250000	0.250000	0.750000	0	0.363711	0.363711	0.363711			
Cr	0.625000	0.125000	0.625000	0	0.113711	0.386289	0.613711			
Cr	0.375000	0.875000	0.625000	0	0.113711	0.613711	0.386289			
Cr	0.875000	0.125000	0.875000	0	0.386289	0.113711	0.613711			
Cr	0.125000	0.875000	0.875000	0	0.386289	0.886289	0.386289			
Cr	0.625000	0.625000	0.125000	0	0.136289	0.136289	0.363711			
Cr	0.375000	0.375000	0.125000	0	0.636289	0.863711	0.136289			
Cr	0.875000	0.625000	0.375000	0	0.363711	0.136289	0.136289			
Cr	0.125000	0.375000	0.375000	0	0.863711	0.863711	0.363711			
Cr	0.125000	0.125000	0.125000	0	0.613711	0.886289	0.613711			
Cr	0.875000	0.875000	0.125000	0	0.613711	0.113711	0.386289			
Cr	0.375000	0.125000	0.375000	0	0.386289	0.613711	0.113711			
Cr	0.625000	0.875000	0.375000	0	0.386289	0.386289	0.886289			
Cr	0.125000	0.625000	0.625000	0	0.136289	0.636289	0.863711			
Cr	0.875000	0.375000	0.625000	0	0.636289	0.363711	0.636289			
Cr	0.375000	0.625000	0.875000	0	0.363711	0.636289	0.636289			
Cr	0.625000	0.375000	0.875000	0	0.863711	0.363711	0.863711			
0	0.886289	0.113711	0.113711	0	0.613711	0.386289	0.113711			
0	0.886289	0.886289	0.886289	0	0.613711	0.613711	0.886289			
0	0.636289	0.136289	0.863711							
0	0.136289	0.863711	0.636289							
0	0.863711	0.136289	0.636289							
0	0.363711	0.863711	0.863711							

l

Fig. S2: The calculated enthalpies of the the tetragonal AFM1 (AFM-MnCr, black) and tetragonal AFM2 (AFM-Cr, blue) phases as a function of pressure. Inset: the enthalpy difference between the tetragonal AFM1 and AFM2 phases and the cubic phase with respect to pressure. Enthalpy *H* is defined as H(P) = E + PV, and a lower value of *H* indicates the phase stability. The AFM-MnCr \rightarrow AFM-Cr transition is expected to take place at 30.5 GPa (extrapolated in bottom plot, the experimental value is 21.1 GPa).

Table S4: Structural data for the $I4_1/amd$ (Z = 4) and the high-pressure $P4_32_12$ (Z = 8) tetragonal phases of NiCr₂O₄.

a I4 ₁ /amd	P (GPa)	a (Å)	<i>c</i> (Å)	$c/a\sqrt{2}$	$V(\text{\AA}^3)$	О-у	O-z	Ni-O (Å)	Cr-O(// <i>ab</i>) (Å)	Cr-O(//c) (Å)	Cr- O(// <i>ab</i> /// <i>c</i>)														
	10-4	5.8365(1)	8.4475(1)	1.023	287.8	0.0219(4)	0.7704(4)	2.007(1)	1.982(2)	1.944(3)	0.981														
	1.2	5.8108(1)	8.4715(1)	1.031	286	0.0174(2)	0.7677(2)	1.969(3)	1.990(3)	1.971(3)	0.99														
	4.3	5.7539(1)	8.5016(1)	1.045	281.5	0.0189(2)	0.7690(3)	1.973(3)	1.965(3)	1.967(3)	1.001														
	6.9	5.7180(1)	8.5071(1)	1.052	278.1	0.0152(2)	0.7680(2)	1.944(3)	1.967(2)	1.976(3)	1.004														
	9.6	5.6820(1)	8.5075(1)	1.059	274.7	0.0162(3)	0.7691(4)	1.947(3)	1.952(2)	1.966(3)	1.007														
	12.9	5.6408(1)	8.5038(1)	1.066	270.6	0.0159(3)	0.7703(3)	1.943(2)	1.940(4)	1.955(3)	1.008														
	16.6	5.5957(1)	8.4892(1)	1.073	265.8	0.0159(2)	0.7702(4)	1.932(2)	1.924(4)	1.953(3)	1.016														
	19.4	5.5550(1)	8.4710(1)	1.078	261.1	-	-	-	-	-	-														
<i>P</i> 4 ₃ 2 ₁ 2 ^b	P (GPa)	a (Å)	<i>c</i> (Å)	c/a	$V(\text{\AA}^3)$	Ni-x	Ni-y	Ni-z	Cr(1)-x	Cr(2)-x	Cr(3)-x	Cr(3)-y	Cr(3)-z	O(1)-x	O(1)-y	O(1)-z	O(2)-x	O(2)-y	O(2)-z	O(3)-x	O(3)-y	O(3)-z	O(4)-x	O(4)-y	O(4)-z
	19.4	8.4489(1)	7.1718(2)	0.849	511.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23.2	8.4304(1)	7.0659(3)	0.838	502.2	0.3443(2)	0.8768(3)	0.0166(3)	0.6440(4)	0.1225(4)	0.2554(3)	0.0105(4)	0.6033(3)	0.1403(3)	0.8937(4)	-0.0322(4)	0.5907(5)	0.3847(3)	-0.0071(6)	0.3141(5)	0.0717(6)	0.0504(4)	1.0221(5)	0.5550(4)	-0.1808(5)
	26	8.4274(1)	6.9742(3)	0.828	495.3	0.3563(2)	0.8655(3)	0.0258(3)	0.6500(4)	0.1150(4)	0.2546(3)	-0.0008(4)	0.6120(3)	0.1585(4)	0.8955(4)	-0.0419(4)	0.6059(4)	0.3710(3)	-0.0163(6)	0.2865(5)	0.0788(8)	0.0535(4)	1.0398(5)	0.5857(4)	-0.2028(5)
	29.7	8.4173(1)	6.8772(2)	0.817	487.3	0.3565(2)	0.8716(3)	0.0300(3)	0.6533(4)	0.1173(4)	0.2516(3)	0.0015(4)	0.6293(3)	0.1187(4)	0.8803(4)	-0.0141(4)	0.6446(5)	0.3922(4)	0.0225(6)	0.3107(5)	0.0656(8)	-0.0110(4)	1.0635(5)	0.5742(4)	-0.0954(6)
	32.5	8.4029(1)	6.8169(4)	0.811	481.3	0.3593(2)	0.8699(3)	0.0370(3)	0.6627(4)	0.1157(4)	0.2412(3)	-0.0048(4)	0.6317(3)	0.1297(4)	0.8805(5)	-0.0067(4)	0.6561(4)	0.4165(4)	0.0236(6)	0.3290(5)	0.0757(8)	-0.0491(4)	1.0670(5)	0.5835(4)	-0.0536(7)
	36.1	8.3884(1)	6.7477(3)	0.804	474.8	0.3466(2)	0.8843(3)	0.0250(2)	0.6287(4)	0.1323(4)	0.2246(3)	-0.0012(4)	0.6180(3)	0.1292(4)	0.9156(4)	-0.0399(4)	0.6335(5)	0.3502(4)	0.0222(5)	0.3673(6)	0.1022(8)	0.0589(4)	0.9168(5)	0.5893(6)	-0.0956(7)
	39.8	8.3704(2)	6.6711(3)	0.797	467.4	0.3521(2)	0.8896(2)	0.0427(2)	0.6039(4)	0.1235(4)	0.2561(3)	-0.0009(4)	0.6083(3)	0.1116(4)	0.9088(5)	-0.0009(4)	0.6708(6)	0.3785(4)	-0.0067(5)	0.3257(6)	0.1516(8)	-0.0910(4)	0.8744(5)	0.5371(8)	-0.1186(7)
	42.9	8.3502(2)	6.6280(3)	0.794	462.1	0.3499(2)	0.8874(2)	0.0418(2)	0.6189(4)	0.1371(4)	0.2534(3)	-0.0129(4)	0.5873(3)	0.1816(4)	0.9221(5)	-0.0383(4)	0.6125(6)	0.3868(4)	-0.0037(5)	0.3222(6)	0.1600(8)	-0.0465(5)	0.9275(5)	0.5697(8)	-0.1172(8)
	46.3	8.3316(3)	6.5920(2)	0.791	457.6	0.3403(2)	0.8891(2)	0.0413(2)	0.6158(4)	0.1391(4)	0.2600(3)	-0.0139(4)	0.5798(3)	0.1702(4)	0.9279(5)	-0.0582(5)	0.6127(6)	0.3943(5)	-0.0236(6)	0.3180(6)	0.1525(8)	-0.0456(6)	0.9398(5)	0.5681(8)	-0.1177(9)
	50.2	8.3142(2)	6.5462(4)	0.787	452.5	0.3391(2)	0.8884(2)	0.0371(2)	0.6201(4)	0.1339(4)	0.2561(3)	-0.0015(4)	0.5869(3)	0.167(4)	0.942(5)	-0.071(5)	0.634(6)	0.392(5)	-0.009(6)	0.319(6)	0.166(4)	-0.056(7)	0.940 (5)	0.563(3)	-0.073(1)

 Table S4. Footnotes

^aWyckoff positions: Ni (4b: 0, 0.25, 0.375), Cr (8c: 0, 0, 0), O (16h: 0, y, z); Isotropic atomic displacement parameters U_{iso} : $U_{iso,Ni} = 0.02(1)$ Å², $U_{iso,Cr} = 0.04(1)$ Å², $U_{iso,O} = 0.03(1)$ Å²

^bWyckoff positions: Ni (8b: x, y, z), Cr(1) (4a: x, x, 0), Cr(2) (4a: x, x, 0), Cr(3) (8b: x, y, z), O(1) (8b: x, y, z), O(2) (8b: x, y, z), O(3) (8b: x, y, z), O(4) (8b: x, y, z); Isotropic atomic displacement parameters U_{iso} : $U_{iso,Ni} = 0.003(1)$ Å², $U_{\rm iso,Cr} = 0.004(1) \text{ Å}^2, U_{\rm iso,O} = 0.006(1) \text{ Å}^2$

	I4 ₁ /am	d-paraM			I4 ₁ /amd-AFM					
P (GPa)	a (Å)	<i>c</i> (Å)	<i>c/a*</i>	$V(\text{\AA}^3)$	P (GPa)	a (Å)	c (Å)	<i>c/a*</i>	V (Å ³)	
-8.4222	6.0953	8.6869	1.0077	320	-8.7021	6.0087	8.8611	1.0428	320.00	
-5.7029	6.0563	8.6434	1.0092	314.55	-6.3205	5.9621	8.8509	1.0497	314.55	
-2.8244	6.0121	8.6120	1.0129	309.09	-3.7330	5.9160	8.8326	1.0557	309.09	
0.2204	5.9673	8.5824	1.0170	303.64	-0.9212	5.8791	8.7813	1.0562	303.64	
3.4385	5.9309	8.5305	1.0170	298.18	2.1351	5.8405	8.7425	1.0584	298.18	
6.8370	5.8956	8.4806	1.0171	292.73	5.4585	5.8014	8.7004	1.0605	292.73	
10.4225	5.8467	8.4563	1.0227	287.27	9.0735	5.7499	8.6897	1.0686	287.27	
14.2009	5.7933	8.4491	1.0313	281.82	13.0076	5.7085	8.6544	1.0720	281.82	
18.1777	5.7211	8.4636	1.0461	276.36	17.2912	5.6526	8.6462	1.0816	276.36	
22.3571	5.6549	8.4750	1.0597	270.91	21.9579	5.6095	8.6056	1.0848	270.91	
26.7421	5.5866	8.4827	1.0737	265.45	27.0454	5.5507	8.6169	1.0977	265.45	
29.2458	5.5531	8.4936	1.0815	262.45	30.0425	5.5184	8.6148	1.1039	262.45	
31.3337	5.5191	8.4944	1.0883	260	32.5955	5.4964	8.6040	1.1069	260.00	
38.7586	5.4114	8.4940	1.1099	251.65	39.9969	5.4328	8.5871	1.1177	253.40	
47.5889	5.2726	8.4760	1.1367	242.33	50.0164	5.3508	8.5772	1.1335	245.47	
	P4 ₃ 2 ₁ 2	2-ParaM				<i>P</i> 4 ₃ 2	₁ 2-AFM			
P (GPa)	<i>a</i> (Å)	с (Å)	c/a V	(Å ³)	P (GPa)	<i>a</i> (Å)	c (Å)	<i>c/a</i>	$V(\text{\AA}^3)$	
-3.6602	9.0227	7.3679 0	0.8166 600	0.0000	-4.8551	8.9902	7.4596	0.8298	600	
-1.9566	8.9740	7.2638 0	0.8094 585	5.0000	-1.5306	8.9435	7.3499	0.8218	585	
0.4627	8.9155	7.1715 0	0.8044 570	0.0000	2.2990	8.8954	7.2408	0.8140	570	
3.7655	8.8527	7.0800 0	0.7998 555	5.0000	6.7134	8.8418	7.1347	0.8069	555	
8.1581	8.7974	6.9744 0	0.7928 540	0.0000	11.8067	8.7940	7.0175	0.7980	540	
13.8952	8.7381	6.8792 0	0.7873 525	5.0000	17.6901	8.7350	6.9138	0.7915	525	
16.1588	8.7088	6.8594 0	0.7876 520	0.0000	19.8492	8.7125	6.8830	0.7900	520	
18.6197	8.6873	6.8287 0	0.7861 515	5.0000	22.1162	8.6957	6.8422	0.7869	515	
21.2924	8.6641	6.7961 0	0.7844 510	0.0000	24.4970	8.6772	6.8051	0.7843	510	
24.1922	8.6398	6.7655 0	0.7831 505	5.0000	26.9977	8.6567	6.7686	0.7819	505	
27.3360	8.6149	6.7366 0	0.7820 500	0.0000	29.6251	8.6357	6.7342	0.7798	500	
30.7417	8.5903	6.7081 0	0.7809 495	5.0000	32.3863	8.6174	6.6943	0.7768	495	
34.4289	8.5698	6.6731 0).7787 490	0.0000	35.2886	8.5998	6.6555	0.7739	490	
38.4185	8.5426	6.6405 0	0.7773 485	5.0000	38.3402	8.5743	6.6246	0.7726	485	
42.7328	8.5240	6.6034 0	0.7747 480	0.0000	41.5494	8.5541	6.5863	0.7700	480	
47.3965	8.5002	6.5719 (0.7731 475	5.0000	44.9257	8.5295	6.5540	0.7684	475	
52.4358	8.4784	6.5348 0	0.7708 470	0.0000	48.4783	8.5080	6.5189	0.7662	470	
57.8792	8.4520	6.5056 (0.7697 465	5.0000	52.2180	8.4885	6.4792	0.7633	465	
					56.1556	8.4635	6.4452	0.7615	460	

Table S5: DFT-calculated structural parameters for the phases of NiCr₂O₄.

Lattice vector (Å)	Х	у	Ζ
а	5.84	0	0
b	0	5.84	0
c	0	0	8.43

Table S6: The experimental structure of NiCr₂O₄ (Space group: $I4_1/amd$) used in the calculations.

Ions	u ₁	u ₂	u 3						
Ni	0.000000000	0.250000000	0.375000000						
Ni	0.000000000	0.750000000	0.625000000						
Ni	0.500000000	0.750000000	0.875000000						
Ni	0.500000000	0.250000000	0.125000000						
Cr	0.000000000	0.000000000	0.000000000						
Cr	0.500000000	0.000000000	0.50000000						
Cr	0.250000000	0.750000000	0.250000000						
Cr	0.750000000	0.250000000	0.750000000						
Cr	0.250000000	0.250000000	0.750000000						
Cr	0.750000000	0.750000000	0.250000000						
Cr	0.500000000	0.500000000	0.50000000						
Cr	0.000000000	0.500000000	0.000000000						
0	0.000000000	0.505999982	0.238700002						
0	0.000000000	0.494000018	0.761299968						
0	0.500000000	0.494000018	0.738700032						
0	0.500000000	0.505999982	0.261299998						
0	0.744000018	0.750000000	0.488700002						
0	0.255999982	0.250000000	0.511299968						
0	0.755999982	0.250000000	0.988700032						
0	0.244000018	0.750000000	0.011299998						
0	0.755999982	0.750000000	0.011299998						
0	0.244000018	0.250000000	0.988700032						
0	0.744000018	0.250000000	0.511299968						
0	0.255999982	0.750000000	0.488700002						
0	0.500000000	0.005999982	0.738700032						
Ο	0.500000000	0.994000018	0.261299998						
Ο	0.000000000	0.994000018	0.238700002						
0	0 000000000	0 005999982	0 761299968						

Fractional Coordinates

Fig. S3: The Jahn-Teller distortion parameter σ_{JT} , as calculated from our XRD data for the CrO₆ octahedra of the $I4_1/amd$ and high-pressure $P4_32_12$ phases of NiCr₂O₄. The parameter is defined as $\sigma_{JT} = \sqrt{\sum_{i=1}^{6} [(Cr - O)_i - \langle Cr - O \rangle]^2}$, where (Cr-O)_i are the six different Cr-O bond distances, and \langle Cr-O> the average value of the Cr-O bond lengths¹². Notice that there are three different CrO₆ octahedra in the $P4_32_12$ modification.

Fig. S4: The calculated enthalpies of the $P4_32_12$ -AFM (black), the $P4_32_12$ -ParaM (red) and $I4_1/amd$ (ParaM, blue) phases as a function of pressure. Inset: the enthalpy difference between the $P4_32_12$ (AFM and paraM) and $I4_1/amd$ (paraM) phases with respect to pressure. Enthalpy H is defined as H(P) = E + PV, and a phase is stable if it has a lower value of H. The $I4_1/amd$ -paraM $\rightarrow P4_32_12$ -ParaM transition is calculated at 35 GPa. The $I4_1/amd$ -paraM $\rightarrow P4_32_12$ -AFM transition is estimated at 40 GPa.

Table S7: Calculation of magnetic exchange parameters of different spinels A = [Mn, Fe, Co, Ni, Cu] and B = [Cr].

The Classical Heisenberg equation used to calculate the magnetic exchange parameters is:

$$\mathbf{E} = \mathbf{E}_0 + \mathbf{C}_{AA}\mathbf{J}_{AA} + \mathbf{C}_{AB}\mathbf{J}_{AB} + \mathbf{C}_{BB}\mathbf{J}_{BB}$$

(A) The structure used is 8 times the unit cell of $MnCr_2O_4$

where, C_{AA} , C_{AB} and C_{BB} are the coefficients of the Heisenberg model. The Following tables are the Magnetic moment construction and the summations of the Heisenberg model ^{13,14} employed for the determination of the magnetic exchange parameters J_{AA} , J_{AB} , J_{BB} of:

			C		
Magnetic configurations	Mn		Cr		
Ferromagnetic	All Up		All Up)	
Neel-type Ferrimagnetic	All Down		All Up)	
Disorder-1	All UP		8 Up & 8 I	Down	
Disorder-2	3 Down & 5 U	Jp	4 Down & 12 Up		
Magnetic configuration	C _{Mn-Mn}		C _{Mn-Cr}	C _{Cr-Cr}	
Ferromagnetic	16		96	48	
Neel-type Ferrimagnetic	16		-96	48	
Disorder-1	16		0		
Disorder-2	0		16	16	
(B) The structure used is 4 tim	es the unit cell of N	NiCr ₂ O ₄			
Magnetic configurations	Ni	Cr			
Ferromagnetic	All Up	All Up			
Neel-type Ferrimagnetic	All Down	All Up			
Ferrimagnetic in Cr	All Up	2 Up 2 Do	own 2 Up 2 D	own	
Disorder-1	1 Up 3 Down	6 Up 2 Do	own		
Disorder-2	3 Down 1 Up	5 Up 3 Down			
Disorder-3	3 Down 1 Up	5 U <u>I</u>	o 4 Down		
Magnetic configuration	C _{Ni-Ni}	C _{Ni-Cr}	CN	i-Ni	
Earramagnatia	0	10	- 11	24	

Magnetic configuration	UNI-NI	CNi-Cr	UNI-NI
Ferromagnetic	8	48	24
Neel-type ferrimagnetic	8	-48	24
Ferrimagnetic in Cr	8	0	-8
Disorder-1	0	-12	0
Disorder-2	0	-8	-4
Disorder-3	0	0	-8

(C) The structure used is 8 times the unit cell of $FeCr_2O_4$.								
Magnetic configurations	Fe	Cr						
Ferromagnetic	All Up	All Up						
Neel-type Ferrimagnetic	All Down All Up							
Ferrimagnetic in Cr	All Up	2 Up 2 Down	2 Up 2 Down 2 Up 2					
e e	1	Down 2 Up 2 Down						
Ferrimagnetic in Fe	2 Up 2 Down 2 Up 2 Down	All Up						
Magnetic configuration	C _{Fe-Fe}	C _{Fe-Cr}	C _{Cr-Cr}					
Ferromagnetic	16	96	48					
Neel-type Ferrimagnetic	16	-96	48					
Ferrimagnetic in Cr	16	0	-16					
Ferrimagnetic in Fe	0	0	48					
(D) The structure used is Magnetic configurations	8 times the unit cell of CoC	Cr ₂ O ₄ .						
Ferromagnetic	All Up	All Up						
Neel-type Ferrimagnetic	All Down	All Up						
Ferrimagnetic in Cr	All Up	2 Up 2 Down	2 Up 2 Down 2 Up 2					
Disordar 1	2 Down 5 Up	$\frac{12}{4} Down \frac{12}{2} Ur \frac{12}{2} Ur$	Down					
Disorder-2	7 Up 1 Down	4 Down 12 Of All Un)					
Disorder-2	/ Op 1 Down	All Op						
Magnetic configuration	Ссо-со	C _{Co-Cr}	C _{Cr-Cr}					
Ferromagnetic	16	96	48					
Neel-type Ferrimagnetic	16	-96	48					
Ferrimagnetic in Cr	16	0	-16					
Disorder-1	0	16	16					

(E) The structure used is 4 times the unit cell of $CuCr_2O_4$									
Magnetic configuration	Cu	Cr							
Ferromagnetic Ferrimagnetic in Cr Disorder-1 Disorder-2 Disorder-3 Disorder-4 Disorder-5	All Up All Up 1 Down 3 Up 3 Down 1 Up 3 Down 1 Up All Up 1 Down 3 Up	All Down 2 Up 2 Down 2 Up 2 Down 6 Up 2 Down 5 Up 3 Down 4 Up 4 Down 7 Up 1 Down 7 Up 1 Down 7 Up 1 Down							
Magnetic configuration	C _{Cu-Cu}	C _{Cu-Cr}	C _{Cr-Cr}						
Ferromagnetic	8	48	24						
Ferrimagnetic in Cr	8	-48	24						
Disorder-1	8	0	-8						
Disorder-2	0	12	0						
Disorder-3	0	-8	-4						
Disorder-4	0	0	-8						
Disorder-5	0	16	12						

Table S8: Transition pressures (P_{Tr}), the various magnetic exchange parameters, ratios, and the respective results from the literature for the various Cr-bearing spinels with magnetic A^{2+} cations (A^{2+} = Mn, Fe, Co, Ni, Cu). The abbreviations stand for: N/A = not available, GGA = Generalized gradient approximation, LSDA = local spin density approximation, and χ = magnetic susceptibility.

Compound	P _{Tr} (GPa)	J _{AA} (meV)	J _{AB} (meV)	J _{BB} (meV)	J_{AA}/J_{BB}	J _{AB} /J _{BB}	Comp. Method	U _A (eV)	U _{Cr} (eV)	Ref.
MnCr ₂ O ₄	11	-2.59	-0.72	-0.96	2.70	0.75	GGA+U	3.9	3.7	Here
(MCO)		-1.58	-1.47	-1.28	1.23	1.15	GGA+U	4	3	15
		-0.42	-0.67	-2.08	0.20	0.32	Fitting χ	N/A	N/A	16
		-1.5	-3	-2	0.75	1.50	LSDA+U	4	4	13
FeCr ₂ O ₄	12	-1.98	-1.86	-2.23	0.89	0.83	GGA+U	5.3	3.7	Here
(FCO)		-0.67	-2.88	-2.83	0.24	1.02	GGA+U	5	3	15
CoCr ₂ O ₄	16	-2.73	-4.54	-2.78	0.98	1.63	GGA+U	3.32	3.7	Here
(CCO)		-0.56	-3.01	-3.26	0.17	0.92	GGA+U	5	3	15
		N/A	N/A	-3	0.55(5)	1.02(1)	Monte Carlo & fitting χ	N/A	N/A	17
		-1	-4	-2	0.5	2	LSDA+U	3	4	13
		-0.92	-9	-2.97	0.31	3.03	GGA+U ^a	3.3	3.7	14
NiCr ₂ O ₄	25	-2.13	-3.84	-4.29	0.50	0.89	GGA+U	6.2	3.7	Here
(NCO)		-1.64	-5.36	-3.94	0.42	1.36	GGA+U	5	3	15
CuCr ₂ O ₄	25	-15.92	-3.14	-15.2627	1.04	0.21	GGA+U	0	3.7	Here
(CuCO)										

^{**a**} In earlier calculations reported in Ref. 14, we noticed the incorrect counting of the total number of interactions between Co-Cr in CoCr_2O_4 [instead of 24 interactions as listed in **Table S5** in the Supplement of Ref. 15, there are 48 of them]. While calculating the exchange interaction parameters we used more than four configurations, and we accepted those values of J_{AA} , J_{AB} , and J_{BB} which have minimum errors. Hence, the main reason behind the magnetic exchange numerical values discrepancy in our paper and those of Ref. 14 could be the incorrect counting of the total number of interactions between Co-Cr in the previous calculations of Ref. 14.

REFERENCES for SI

- ¹ P.W. Stephens, J. Appl. Cryst. **32**, 281 (1999).
- ² R.B. von Dreele, J. Appl. Cryst. **30**, 517 (1997).
- ³ G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
- ⁴ G. Kresse and J. Furthmüller, Phys. Rev. B **54**, 11169 (1996).
- ⁵ G. Kresse and J. Hafner, Phys. Rev. B **49**, 14251 (1994).
- ⁶ G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
- ⁷ G. Kresse and D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- ⁸ P.E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ⁹ J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B **46**, 6671 (1992).

¹⁰ L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B **73**, 195107 (2006).

¹¹ A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, and G. Ceder, Phys. Rev. B **84**, 045115 (2011).

¹² J. Ruiz-Fuertes, A. Friedrich, J. Pellicer-Porres, D. Errandonea, A. Segura, W. Morgenroth, E. Haussuhl, C.-Y. Tu, and A. Polian, Chem. Mater. **23**, 4220 (2011).

¹³ C. Ederer and M. Komelj, Phys. Rev. B **76**, 064409 (2007).

¹⁴ I. Efthimiopoulos, Z.T.Y. Liu, S. V Khare, P. Sarin, T. Lochbiler, V. Tsurkan, A. Loidl, D. Popov, and Y. Wang, Phys. Rev. B **92**, 064108 (2015).

¹⁵ D. Das and S. Ghosh, J. Phys. D Appl. Phys. **48**, 425001 (2015).

¹⁶ E. Winkler, S. Blanco-Canosa, F. Rivadulla, M.A. Lopez-Quintela, J. Rivas, A. Caneiro, M. T. Causa, and M. Tovar, Phys. Rev. B **80**, 104418 (2009).

¹⁷ B.C. Melot, J.E. Drewes, R. Seshadri, E.M. Stoudenmire, and A.P. Ramirez, J. Phys. Cond. Matt. **21**, 216007 (2009).