### Pressure-induced phase transitions in the CdCr<sub>2</sub>Se<sub>4</sub> spinel

I. Efthimiopoulos<sup>1,2</sup>, Z. T. Y. Liu<sup>3</sup>, M. Kucway<sup>1</sup>, S. V. Khare<sup>3</sup>, P. Sarin<sup>4</sup>, V. Tsurkan<sup>5,6</sup>, A. Loidl<sup>6</sup>, and Y. Wang<sup>1,‡</sup>

<sup>1</sup>Department of Physics, Oakland University, Rochester, Michigan 48309, USA

<sup>2</sup>Deutsches GeoForschungsZentrum GFZ, Section 4.3, Telegrafenberg, 14473, Potsdam, Germany

<sup>3</sup>Department of Physics, University of Toledo, Toledo, Ohio 43606, USA

<sup>4</sup>School of Materials Science and Engineering, Oklahoma State University, Tulsa, Oklahoma 74106, USA

<sup>5</sup>Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Chisinau, Republic of Moldova

<sup>6</sup>Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86159 Augsburg, Germany

#### SUPPLEMENTARY INFORMATION

**Table S1**: Experimentally determined structural parameters for the  $Fd\overline{3}m$  (Z = 8), the  $I4_1/amd$  (Z = 4), and the orthorhombic (Z = 4) phases of CdCr<sub>2</sub>Se<sub>4</sub>.

| $Fd\overline{3}m^{a}$ | P<br>(GPa) | a (Å)        | $V(\text{\AA}^3)$ | Se-u         | Cd-Se<br>(Å)      | Cr-Se<br>(Å) | Cr-Se-Cr<br>( <sup>0</sup> ) |
|-----------------------|------------|--------------|-------------------|--------------|-------------------|--------------|------------------------------|
|                       | 1 bar      | 10.74645(1)  | 1241.07           | 0.2647(1)    | 2.60              | 2.54         | 96.90                        |
|                       | 1.4        | 10.69154(1)  | 1222.14           | 0.2643(1)    | 2.58              | 2.53         | 96.70                        |
|                       | 2.7        | 10.63793(1)  | 1203.84           | 0.2637(1)    | 2.56              | 2.52         | 96.40                        |
|                       | 3.9        | 10.59759(1)  | 1190.21           | 0.2646(1)    | 2.56              | 2.50         | 96.84                        |
|                       | 5.1        | 10.55519(1)  | 1175.97           | 0.2644(1)    | 2.55              | 2.50         | 96.76                        |
|                       | 6          | 10.52646(1)  | 1166.40           | 0.2636(1)    | 2.53              | 2.50         | 96.35                        |
|                       | 7.5        | 10.47808(1)  | 1150.39           | 0.2633(1)    | 2.51              | 2.49         | 96.24                        |
|                       | 8.6        | 10.4454(1)   | 1139.66           | 0.2632(1)    | 2.50              | 2.48         | 96.18                        |
|                       | 9.2        | 10.4316(1)   | 1135.16           | 0.2625(1)    | 2.48              | 2.48         | 95.83                        |
|                       | 11.6       | 10.3739(1)   | 1116.42           |              |                   |              |                              |
| $I4_1/amd^b$          |            | <b>a</b> (Å) | <b>c</b> (Å)      | <i>c/a*</i>  | $V(\text{\AA}^3)$ | Se-y         | Se-z                         |
|                       | 11.6       | 7.8198(1)    | 8.7600(1)         | 0.792        | 535.7             |              |                              |
|                       | 12.9       | 7.8158(1)    | 8.6463(1)         | 0.782        | 528.2             | 0.0593(1)    | 0.2658(2)                    |
|                       | 14         | 7.8140(1)    | 8.4782(1)         | 0.767        | 517.7             | 0.0621(2)    | 0.2745(3)                    |
| Orthorhombic          |            | <b>a</b> (Å) | <b>b</b> (Å)      | <b>c</b> (Å) | <i>c/a*</i>       | b/a          | $V(\text{\AA}^3)$            |
|                       | 15.4       | 7.732(2)     | 7.846(1)          | 8.421(1)     | 0.770             | 1.015        | 510.9                        |
|                       | 16.2       | 7.717(2)     | 7.818(1)          | 8.392(1)     | 0.769             | 1.013        | 506.3                        |
|                       | 19         | 7.669(2)     | 7.788(1)          | 8.293(1)     | 0.765             | 1.016        | 495.4                        |
|                       | 21.3       | 7.634(2)     | 7.756(1)          | 8.223(1)     | 0.762             | 1.016        | 486.9                        |
|                       | 23.2       | 7.587(2)     | 7.731(1)          | 8.176(1)     | 0.762             | 1.019        | 479.6                        |
|                       | 25.2       | 7.579(2)     | 7.695(1)          | 8.146(1)     | 0.760             | 1.015        | 475.2                        |
|                       | 27.6       | 7.490(2)     | 7.648(1)          | 8.067(1)     | 0.762             | 1.021        | 462.1                        |

<sup>a</sup>Wyckoff positions: Cd (8a: 0.125, 0.125, 0.125), Cr (16d: 0.5, 0.5, 0.5), Se (32e: u, u, u) Isotropic atomic displacement parameters  $U_{iso}$ :  $U_{iso,Cd} = 0.003(1)$  Å<sup>2</sup>,  $U_{iso,Cr} = 0.007(2)$  Å<sup>2</sup>,  $U_{iso,Se} = 0.005(3)$  Å<sup>2</sup>

<sup>b</sup>Wyckoff positions: Cd (4a: 0, 0.75, 0.125), Cr (8d: 0, 0, 0.5), Se (16h: 0, y, z)

 $U_{\text{iso,Cd}} = 0.003 \text{ Å}^2 \text{ (fixed), } U_{\text{iso,Cr}} = 0.007 \text{ Å}^2 \text{ (fixed), } U_{\text{iso,Se}} = 0.005 \text{ Å}^2 \text{ (fixed)}$ 

| L       |                   |              |               |
|---------|-------------------|--------------|---------------|
| P (GPa) | $V(\text{\AA}^3)$ | <i>a</i> (Å) | <i>E</i> (eV) |
| -2.7    | 1342.236          | 11.03087     | -75.2         |
| -0.7    | 1301.358          | 10.91773     | -75.3         |
| 1.6     | 1256.373          | 10.79045     | -75.3         |
| 4.5     | 1212.437          | 10.66317     | -75.1         |
| 7.9     | 1169.537          | 10.53589     | -74.7         |
| 12.1    | 1123.07           | 10.39447     | -74.0         |
| 17.1    | 1077.852          | 10.25305     | -73.0         |

**Table S1:** DFT calculated cell parameters of the  $Fd\overline{3}m$  (Z = 8) CdCr<sub>2</sub>Se<sub>4</sub> phase with respect to <u>pressure</u>.

**Table S2:** DFT calculated cell parameters of the tetragonal AFM1 phase with respect to pressure. Notice that beyond 15 GPa there is large inequality of the *a* and *b* axes, and the cell is essentially orthorhombic.

| P (GPa) | $V(\text{\AA}^3)$ | a (Å) | <b>b</b> (Å) | c (Å) | <i>E</i> (eV) |
|---------|-------------------|-------|--------------|-------|---------------|
| 0.1     | 670.0             | 7.82  | 7.83         | 10.93 | -149.9        |
| 1.5     | 641.3             | 7.71  | 7.71         | 10.78 | -150.1        |
| 3.4     | 612.5             | 7.60  | 7.61         | 10.60 | -149.8        |
| 5.8     | 583.7             | 7.49  | 7.50         | 10.39 | -148.9        |
| 8.8     | 555.0             | 7.75  | 7.74         | 9.25  | -147.1        |
| 12.7    | 526.2             | 7.83  | 7.81         | 8.61  | -145.3        |
| 17.8    | 497.5             | 7.70  | 7.77         | 8.32  | -142.8        |
| 24.5    | 468.7             | 7.46  | 7.73         | 8.13  | -139.1        |
| 33.4    | 440.0             | 7.24  | 7.67         | 7.93  | -134.0        |

**Table S3:** DFT calculated cell parameters of the tetragonal AFM2 phase with respect to pressure. Notice that beyond 15 GPa there is large inequality of the *a* and *b* axes, and the cell is essentially orthorhombic.

| P (GPa) | $V(\text{\AA}^3)$ | a (Å) | <b>b</b> (Å) | c (Å) | E (eV) |
|---------|-------------------|-------|--------------|-------|--------|
| -0.9    | 672.0             | 7.85  | 7.81         | 10.96 | -150.1 |
| 1.2     | 640.0             | 7.71  | 7.66         | 10.84 | -150.4 |
| 3.7     | 608.0             | 7.58  | 7.52         | 10.66 | -150.0 |
| 6.9     | 576.0             | 7.46  | 7.41         | 10.42 | -148.7 |
| 10.8    | 544.0             | 7.84  | 7.85         | 8.84  | -146.7 |
| 15.8    | 512.0             | 7.78  | 7.79         | 8.44  | -144.2 |
| 22.2    | 480.0             | 7.59  | 7.75         | 8.16  | -140.6 |
| 27.0    | 460.0             | 7.41  | 7.71         | 8.04  | -137.6 |
| 32.7    | 440.0             | 7.25  | 7.67         | 7.92  | -133.8 |

**Table S5:** Atomic positions of the tetragonal phase of CdCr<sub>2</sub>Se<sub>4</sub>. This cell is a prototype transformed from the conventional cubic unit cell of the spinel structure at 0 GPa. Relaxations were done to ensure optimized cell shape and atomic positions.

| Lattice<br>vectors<br>(Å) | X     | у     | Z     |
|---------------------------|-------|-------|-------|
| a                         | 7.688 | 0.000 | 0.000 |
| b                         | 0.000 | 7.688 | 0.000 |
| с                         | 0.000 | 0.000 | 8.873 |

| Atom - | Relative coordinates |                       |       |      | Relative coordinates |                       |       |
|--------|----------------------|-----------------------|-------|------|----------------------|-----------------------|-------|
|        | <b>u</b> 1           | <b>u</b> <sub>2</sub> | u3    | Atom | <b>u</b> 1           | <b>u</b> <sub>2</sub> | u3    |
| Cd     | 0.000                | 0.500                 | 0.250 | Se   | 0.781                | 0.500                 | 0.641 |
| Cd     | 0.500                | 0.000                 | 0.750 | Se   | 0.719                | 0.000                 | 0.141 |
| Cd     | 0.500                | 0.500                 | 0.500 | Se   | 0.500                | 0.281                 | 0.891 |
| Cd     | 0.000                | 0.000                 | 0.000 | Se   | 0.000                | 0.219                 | 0.391 |
| Cr     | 0.750                | 0.500                 | 0.875 | Se   | 0.719                | 0.500                 | 0.109 |
| Cr     | 0.750                | 0.000                 | 0.375 | Se   | 0.781                | 0.000                 | 0.609 |
| Cr     | 0.500                | 0.250                 | 0.125 | Se   | 0.000                | 0.281                 | 0.859 |
| Cr     | 0.000                | 0.250                 | 0.625 | Se   | 0.500                | 0.219                 | 0.359 |
| Cr     | 0.250                | 0.000                 | 0.375 | Se   | 0.219                | 0.000                 | 0.609 |
| Cr     | 0.250                | 0.500                 | 0.875 | Se   | 0.281                | 0.500                 | 0.109 |
| Cr     | 0.000                | 0.750                 | 0.625 | Se   | 0.281                | 0.000                 | 0.141 |
| Cr     | 0.500                | 0.750                 | 0.125 | Se   | 0.219                | 0.500                 | 0.641 |
|        |                      |                       |       | Se   | 0.000                | 0.781                 | 0.391 |
|        |                      |                       |       | Se   | 0.500                | 0.719                 | 0.891 |
|        |                      |                       |       | Se   | 0.500                | 0.781                 | 0.359 |
|        |                      |                       |       | Se   | 0.000                | 0.719                 | 0.859 |



**FIG. S1:** (Left) XRD patterns of CdCr<sub>2</sub>Se<sub>4</sub> collected during decompression (T = 300 K,  $\lambda = 0.4246$  Å). The black and blue spectra correspond to the  $Fd\overline{3}m$  and the disordered phase, respectively. Background has been subtracted for clarity. (Right) Enhanced view of the  $I4_1/amd$  (200) Bragg peak in the vicinity of the tetragonal-orthorhombic transition. The orthrohombic distortion is recognized by the splitting of this peak into two components at 15.4 GPa.



**FIG S2:** Evolution of the Bragg peak widths for two peaks of the orthorhombic phase. Notice the increase above 25 GPa, indicating the onset of structural disorder.





**FIG S4**: Plot of the normalized stress *F* as a function of the Eulerian strain  $f_E$  for the  $Fd\overline{3}m$  phase of CdCr<sub>2</sub>S<sub>4</sub>. The *F*- $f_E$  quantities are calculated from the *P*-*V* data (**Table S1**) as follows:  $f_E = [(V_0/V)^{2/3}-1]/2$  and  $F = P/3f_E(1+2f_E)^{5/2}$ , where  $V_0$  is the ambient-pressure volume, *V* is volume, and *P* stands for pressure<sup>1</sup>. Since  $V_0$  is not known for the  $I4_1/amd$  and orthorhombic phases, we did not apply this procedure for both of these high-pressure modifications.



**FIG. S5**: Pressure-induced variation of the normalized polyhedral volume for the Fd3m phase of CdCr<sub>2</sub>S<sub>4</sub>. The black and red circles correspond to the CdSe<sub>4</sub> tetrahedral and the CrSe<sub>6</sub> octahedral volumes, respectively. The solid lines are fitted second-order Birch-Murnaghan equations of state<sup>2,3</sup>.



**FIG S6:** Relaxation traces of the  $c/a^*$  ratios at different pressure points for (a) AFM1 and (b) AFM2 phases. For each pressure, the energy is lowered as the structure reaches the final  $c/a^*$  ratio  $(a^* = \sqrt{2}a)$ .





**FIG S7**: Electronic total density of states (DOS) per formula unit (f.u.) of the cubic and the high-pressure tetragonal AFM1 and AFM2 phases at various pressures. Spin-up states are above *x*-axis, whereas the spin-down states lie below. Note that the calculations were performed with regular PBE potentials rather than HSE06.

#### **REFERENCES**

- <sup>1</sup> R.J. Angel, Rev. Miner. Geochem. **41**, 35 (2000).
- <sup>2</sup> F. Birch, Phys. Rev. **71**, 809 (1947).
- <sup>3</sup> F. Birch, J. Geophys. Res. **83**, 1257 (1978).