Pressure-induced transition in the multiferroic CoCr₂O₄ spinel

I. Efthimiopoulos¹, Z. T. Y. Liu², S. V. Khare², P. Sarin³, T. Lochbiler¹, V. Tsurkan^{4,5}, A. Loidl⁴, D. Popov⁶, and Y. Wang¹

¹Department of Physics, Oakland University, Rochester, MI 48309, USA

²Department of Physics, University of Toledo, Toledo, OH 43606, USA

³School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA

⁴Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86159 Augsburg, Germany

⁵Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova

⁶High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439, USA

SUPPLEMENTARY INFORMATION

FIG. S1: Normalized XRD patterns of $CoCr_2O_4$ at selected pressures (*T*=300 K, λ =0.4246 Å). The black and red patterns correspond to the *Fd*-3*m* and the tetragonal phases, respectively. Arrows mark the Bragg peak splittings. Background has been subtracted for clarity.

Fd-3m	P (GPa)	a (Å)	$V(\text{\AA}^3)$	O-u	Co-O (Å)	Cr-O (Å)	Cr-O-Cr (degrees)
	0.0001	8.3341(1)	578.86(2)	0.2653(5)	2.026(2)	1.964(1)	97.2(1)
	1.1	8.3203(1)	575.99(2)	0.2655(5)	2.025(2)	1.960(1)	97.3(1)
	2.1	8.3069(1)	573.21(2)	0.2657(5)	2.024(2)	1.955(1)	97.4(1)
	3.1	8.2964(1)	571.04(2)	0.2650(5)	2.012(2)	1.957(1)	97.1(1)
	4.1	8.2845(1)	568.58(2)	0.2646(5)	2.003(2)	1.958(1)	96.8(1)
	5.4	8.2711(1)	565.84(2)	0.2651(5)	2.007(2)	1.951(1)	97.1(1)
	6.6	8.2541(1)	562.35(2)	0.2644(5)	1.993(2)	1.952(1)	96.8(1)
	8.1	8.2354(1)	558.54(2)	0.2637(5)	1.979(2)	1.952(1)	96.4(1)
	10.1	8.2126(1)	553.91(2)	0.2637(5)	1.972(2)	1.948(1)	96.4(1)
	11.8	8.1989(1)	551.14(2)	0.2629(5)	1.958(2)	1.950(1)	96.0(1)
	13.2	8.1829(1)	547.93(2)	0.2630(5)	1.956(2)	1.945(1)	96.1(1)
	14.7	8.1693(1)	545.19(2)	0.2624(5)	1.944(2)	1.946(1)	95.8(1)
	16.3	8.1579(1)	542.93(2)	0.2620(8)	1.936(5)	1.947(4)	95.6(3)
I4 ₁ /amd	P (GPa)	<i>a</i> (Å)	<i>c</i> (Å)	c/a	V (Å ³)		
	17.8	5.7649(1)	8.142(1)	0.9987(2)	270.60(4)		
	19.6	5.7591(1)	8.115(1)	0.9963(2)	269.14(4)		
	21.4	5.7572(1)	8.084(1)	0.9928(2)	267.93(4)		
	23.6	5.7509(1)	8.031(1)	0.9875(2)	265.61(4)		
	25.8	5.7451(2)	7.997(1)	0.9842(2)	263.94(5)		
	27.4	5.7408(2)	7.965(3)	0.9811(5)	262.6(1)		
	29.4	5.7312(2)	7.925(3)	0.9778(5)	260.3(1)		

Table S1: Experimentally determined structural data (lattice parameters, volume *V*, oxygen positional coordinate *u*, cation-anion bond lengths, and the Cr-O-Cr bond angle) for the *Fd*-3*m* (*Z*=8) and the *I*4₁/*amd* (*Z*=4) phases of CoCr₂O₄.

Table S2: Theoretically calculated (with DFT) structural parameters (lattice constants and volumes) for the paramagnetic cubic and the ferrimagnetic tetragonal phases of $CoCr_2O_4$ at various pressures. The energy *E* of each configuration is also provided.

C	CoCr ₂ O ₄ at various pressures. The energy <i>E</i> of each configuration is also provided.						
	P (GPa)	a (Å)			$V(\text{\AA}^3)$	<i>E</i> (eV)	
	-3.3	8.527			620.00	-419.050	
	0	8.472			608.00	-419.165	
Paramagnetic	2.9	8.425			598.00	-419.072	
cubic	10.4	8.320			576.00	-418.159	
	19.3	8.213			554.00	-416.110	
	30	8.103			532.00	-412.705	
	P (GPa)	<i>a</i> (Å)	<i>c</i> (Å)	<i>c/a*</i>	$V(\text{\AA}^3)$	<i>E</i> (eV)	
	-3.3	6.043	8.489	0.993	310.00	-209.511	
	0	6.004	8.433	0.993	304.00	-209.572	
Ferrimagnetic	2.9	5.971	8.386	0.993	299.00	-209.525	
tetragonal	10.4	5.909	8.248	0.986	288.00	-209.083	
	19.3	5.849	8.098	0.978	277.00	-208.067	
	30	5.805	7.894	0.959	266.00	-206.387	

FIG S2: Refinements for the Fd-3m phase of CoCr₂O₄ at ambient pressure before [(a), Rietveld] and after [(b), Le Bal fit] after the experimental pressure run. Dots correspond to the measured spectrum, whereas the red and blue solid lines represent the best refinement and the difference between the experimental and refined pattern, respectively. Vertical ticks mark the Bragg peak positions.

Spinel	B_0 (GPa)	B'_0	$P_{\mathrm{Tr}}(\mathrm{GPa})$	HP phase
CoCr ₂ O ₄	209(±8)	5(±1)	>16	Tetragonal
	^a 170(±2)	^a 4.1(±2)	~10	Tetragonal
FeCr ₂ O ₄ ¹	209	4	12	$I4_1/amd$
$MgCr_2O_4^2$	189	7.2	20	$I4_1/amd$
$ZnCr_2O_4^3$	183	7.9	23	Orthorhombic
$MnCr_2O_4^4$	252	4.8	20-23	Decomposition
NiCr ₂ O ₄ ⁵	-	-	^a 16	Decomposition
$CdCr_2O_4^{6}$	-	-	10 (+1100 °C)	CaFe ₂ O ₄ -type
Co ₃ O ₄ ^{7,8}	190	6.2	-	-
	249	4	30	Ag ₃ O ₄ -type

Table S3: Elastic parameters, i.e. bulk modulus B_0 and its pressure derivative B'_0 for selected oxide spinels. The reported transition pressures P_{Tr} and the respective high-pressure (HP) phases are also tabulated.

^aOur *ab initio* calculations.

FIG S3: Integrated intensities for all of the observed Raman-active modes as a function of pressure. The vertical dashed line marks the onset of the cubic-tetragonal transition.

Table S4: Construction parameters (lattice vectors and fractional coordinates) for the special
quasi-random paramagnetic $CoCr_2O_4$ supercell. The first half of Co and Cr cations
are set to spin-up, and the second half spin-down.

Lattice vector (Å)	X	У	Z
a	-6.0295128	0	8.5270194
b	6.0295128	0	8.5270194
c	0	6.0295128	-8.5270194

	Fractional coordinates				Fractional coordinates		
Ion	u ₁	u ₂	U3	Ion	\mathbf{u}_1	u ₂	U3
Со	0.875554	0.875722	0.501083	0	0.330552	0.830808	0.27383
Со	0.125579	0.625537	0.001117	0	0.830985	0.330766	0.274063
Со	0.250916	0.750671	0.502005	0	0.306792	0.306417	0.227742
Co	0.000864	0.000857	0.001472	0	0.806197	0.806594	0.227529
Co	0.375384	0.375415	0.501102	0	0.942313	0.670085	0.498696
Co	0.625897	0.125731	0.001094	0	0.442466	0.169813	0.49861
Co	0.750643	0.250614	0.5012	0	0.919871	0.692478	-0.001364
Co	0.500687	0.500985	0.002139	0	0.420125	0.192364	-0.001275
Cr	0.31349	0.063618	0.501779	0	0.567988	0.56813	0.27411
Cr	0.812463	0.562347	0.500132	0	0.06842	0.068303	0.27397
Cr	0.935828	0.936853	0.248623	0	0.046348	0.546081	0.227744
Cr	0.436639	0.435499	0.248593	0	0.546007	0.046264	0.227705
Cr	0.937123	0.43704	0.248318	0	0.19223	0.419765	-0.001621
Cr	0.437538	0.937725	0.248814	0	0.692693	0.920162	-0.000976
Cr	0.562754	0.812829	0.500899	0	0.169711	0.442213	0.498351
Cr	0.063214	0.313128	0.500993	0	0.670114	0.942655	0.498986
Cr	0.18703	0.187148	0.748344	0	0.9315	0.203597	-0.001691
Cr	0.687753	0.687577	0.748887	0	0.431013	0.703911	-0.000951
Cr	0.813639	0.563484	0.001767	0	0.453916	0.681018	0.499065
Cr	0.312355	0.062511	0.000118	0	0.953577	0.181481	0.498305
Cr	0.68691	0.185819	0.748652	0	0.580789	0.580513	0.773826
Cr	0.185491	0.686694	0.748596	0	0.080733	0.080963	0.774066
Cr	0.063163	0.313226	0.000994	0	0.556627	0.056193	0.727512
Cr	0.562836	0.812727	0.000849	0	0.056434	0.556827	0.727744
0	0.181257	0.954006	0.499165	0	0.318123	0.818002	0.774076
0	0.681344	0.453403	0.498263	0	0.818315	0.3184	0.773981
0	0.703981	0.431256	-0.000851	0	0.796312	0.796058	0.727788
0	0.203427	0.931366	-0.001751	0	0.296091	0.296351	0.727784

8 8 1	(101) (10)	55	2 1
	Co-Co	Co-Cr	Cr-Cr
Ferromagnetic	8	24	24
Néel-type ferrimagnetic	8	-24	24
Ferrimagnetic in Cr	8	0	-8
Ferrimagnetic in Co	-8	0	24

Table S5: Summations of the Heisenberg model9 employed for the determination of the
magnetic exchange parameters J_{AA} , J_{AB} , and J_{BB} in CoCr₂O₄.

FIG S4: The ferrimagnetic energy surface against the axial ratio c/a^* at 26 GPa. The energy surface minimum is achieved at $c/a^*=0.98$.

Table S6: Extracted ionic charge transfer from the Bader charge analysis of the paramagneticcubic and ferrimagnetic tetragonal phases of $CoCr_2O_4$ at various pressures. Noticethat the pressure-induced changes of the ionic charge is not much differentbetween the two phases.

	Atomic		q _{trans} (C)	
	Species	0 GPa	10 GPa	30 GPa
D	Со	-1.277	-1.271	-1.255
Paramagnetic	Cr	-1.777	-1.768	-1.751
CUDIC	Ο	1.208	1.202	1.190
	Со	-1.284	-1.275	-1.262
Ferrimagnetic	Cr	-1.775	-1.770	-1.754
	0	1.209	1.204	1.192

References

¹ A. Kyono, S. A. Gramsch, T. Yamanaka, D. Ikuta, M. Ahart, B. O. Mysen, H. K. Mao, and R. J. Hemley, Phys. Chem. Miner. **39**, 131 (2012).

² W. Yong, S. Botis, S. R. Shieh, W. Shi, and A. C. Withers, Phys. Earth Planet. Inter. **196**, 75 (2012).

³ D. Levy, V. Diella, A. Pavese, M. Dapiaggi, and A. Sani, Amer. Miner. 90, 1157 (2005).

⁴ M. Catti, F. F. Fava, C. Zicovich, and R. Dovesi, Phys. Chem. Miner. 26, 389 (1999).

⁵ Z. Wang, S. K. Saxena, P. Lazor, and H. S. C. O'Neill, J. Phys. Chem. Sol. 64, 425 (2003).

⁶ A. M. Arevalo-Lopez, A. J. Dos Santos-Garcia, E. Castillo-Martinez, A. Duran, and M. A. Alario-Franco, Inorg. Chem. **49**, 2827 (2010).

⁷ L. Bai, M. Pravica, Y. Zhao, C. Park, Y. Meng, S. V. Sinogeikin, and G. Shen, J. Phys. Cond. Matt. **24**, 435401 (2012).

⁸ S. Hirai and W. L. Mao, Appl. Phys. Lett. **102**, 041912 (2013).

⁹ C. Ederer and M. Komelj, Phys. Rev. B 76, 064409 (2007).