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A B S T R A C T

Indium gallium oxide has recently been widely investigated experimentally for applications such as solar cells 
and other applications. In this study, we computationally investigate (InxGa1-x)2O3 alloy system (x = 0.00, 0.25, 
0.50, 0.75, 1.00) in the trigonal crystal structure in R 3 c space group for photovoltaic application using density 
functional theory (DFT) and beyond methods. The lattice constants and bandgap values (4.4–2.6 eV) for end 
members align closely with both experimental and computational studies. Mechanical and vibrational analyses 
reveal that all the alloys are mechanically and dynamically stable. The Crystal Orbital Hamilton Population 
(COHP) analysis shows predominantly positive bonding states below the Fermi level. All the alloys display 
significantly higher average hole-effective masses compared to electron-effective masses. Optical property 
analysis shows lower absorption coefficient and reflectivity, suggesting (InxGa1-x)2O3 alloys as candidates for 
emitter layer material in solar cells.

1. Introduction

Research on new materials has been actively pursued to enhance the 
efficiency of solar cells by optimizing their various layers. CdTe-based 
solar cells have shown the potential to achieve efficiency of up to 28 
% [1,2]. Transparent conducting oxide (TCO) layers play a crucial role 
in improving the performance and efficiency of solar cells. TCO mate-
rials, such as magnesium oxide (MgO) and zinc oxide (ZnO), are mostly 
used in this layer [3]. In recent years, indium oxide (In2O3), known for 
its optical transparency having n-type conductivity [4,5] and gallium 
oxide (Ga2O3), with their favorable electronic and optical properties, are 
widely used as a strong candidate for use in the TCO layer [6,7]. Dive 
et al. suggested that In2O3 and Ga2O3 alloys, with tunable bandgaps 
ranging from 2.6 to 4.8 eV, can be used as a TCO and emitter layer in 
CdTe-based solar cells with an efficiency of 17.59 % [8].

Several experimental studies have explored In2O3, Ga2O3, and the 
(InxGa1-x)2O3 alloy system across various crystal structures. Swallow 
et al. studied the (InxGa1-x)2O3 alloy system (0.01 ≤ x ≤ 0.82) compu-
tationally using density functional theory (DFT) with Heyd-Scuseria- 

Ernzerhof hybrid functional (HSE06) and experimentally through 
pulsed laser deposition (PLD). The study examined the monoclinic, 
hexagonal, and bixbyite phases, highlighting their potential as transport 
conductors and photodetectors [9]. Experimental study on the ortho-
rhombic structure with indium [In] ranging from 0 to 0.38 displayed the 
bandgap values of ~4.1–4.9 eV, obtained using PLD [10,11]. Kokubun 
et al. investigated the (InxGa1-x)2O3 alloy system (0 ≤ x ≤ 0.3) in the 
monoclinic phase, prepared using the sol-gel method, and reported a 
linear decrease in bandgap from 5.0 to 4.2 eV [12]. Similarly, Jamar-
kattel et al. studied (InxGa1-x)2O3 alloy system, highlighting its potential 
as an emitter layer in CdTe solar cells with an efficiency of 16 % at x =
0.36 and a bandgap of 4.03 eV. This study was performed using spec-
troscopic ellipsometry and characterized the alloy system as amorphous 
[13,14].

Earlier computational studies have examined the (InxGa1-x)2O3 alloy 
system for various structures, focusing on their different properties. 
Peelaers et al. studied the structural and electronic properties of both 
monoclinic and cubic structures using DFT for [In] up to 50 % [15]. 
Similarly, Liu et al. examined the electronic properties of the 

* Corresponding author.
E-mail address: sanjay.khare@utoledo.edu (S.V. Khare). 

Contents lists available at ScienceDirect

Physica B: Condensed Matter

journal homepage: www.elsevier.com/locate/physb

https://doi.org/10.1016/j.physb.2025.417615
Received 13 April 2025; Received in revised form 5 July 2025; Accepted 15 July 2025  

Physica B 715 (2025) 417615 

Available online 18 July 2025 
0921-4526/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://orcid.org/0009-0003-2291-8218
https://orcid.org/0009-0003-2291-8218
https://orcid.org/0000-0002-4969-8994
https://orcid.org/0000-0002-4969-8994
https://orcid.org/0000-0001-9520-6586
https://orcid.org/0000-0001-9520-6586
mailto:sanjay.khare@utoledo.edu
www.sciencedirect.com/science/journal/09214526
https://www.elsevier.com/locate/physb
https://doi.org/10.1016/j.physb.2025.417615
https://doi.org/10.1016/j.physb.2025.417615
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2025.417615&domain=pdf


(InxGa1-x)2O3 alloy system in the monoclinic crystal structure. The 
bandgap values in this work were reported to decrease from 4.81 to 4.42 
eV when [In] increased up to 18.75 %, thereby highlighting the mate-
rial’s potential for UV photodetectors [16]. The end members, In2O3 and 
Ga2O3, have also been studied computationally and experimentally. He 
et al. reported the structural, electronic, and optical properties of Ga2O3 
in monoclinic and hexagonal structures using DFT [17]. Grundmann 
et al. examined the elastic properties of Ga2O3 in monoclinic and 
trigonal phases, supporting its applications in thin films [18]. Addi-
tionally, Ga2O3 has been studied in detail, using DFT with GGA + U, 
reporting its structural, electronic, and optical properties across 
trigonal, monoclinic, orthorhombic, and cubic phases. In this work, 
lattice parameters, bandgaps, and electron effective masses have been 
well-documented for all these structures [19]. For In2O3, DFT studies 
have reported the optical and electronic properties of the cubic, ortho-
rhombic, and trigonal crystal structures [20,21]. Boer et al. reported the 
bandgap value for trigonal crystal structure in R 3 c space group to be 
1.30 eV using DFT with PBE-GGA [22]. However, a detailed computa-
tional study on R 3 c space group for the (InxGa1-x)2O3 alloy system is 
still lacking, leaving significant gaps in understanding their properties.

Hence, in this work, we computed the structural, energetic, elastic, 
mechanical, electronic, and optical properties of (InxGa1-x)2O3 (0 ≤ x ≤
1) alloy system in the trigonal crystal structure in R 3 c space group using 
DFT and beyond. The calculated lattice constants for the end members 
showed good agreement with experimental and computational results. 
With the increase in [In], a linear decrease in the formation energy and 
the bandgap values were observed. The average electron effective 
masses were much lower than the hole effective masses for all the alloys. 
The HSE06 functional was employed to obtain electronic and optical 
properties. COHP analysis provided insights into the bonding and anti-
bonding interactions. Phonon calculations indicated that all the alloys 
are dynamically stable. Additionally, analysis of absorption coefficient 
and reflectivity suggests that (InxGa1-x)2O3 alloy system can be used as 
an emitter layer in solar cells.

2. Computational methods

All DFT calculations were performed using the Vienna Ab initio 
Simulation Package (VASP) [23–25]. The Perdew-Burke-Ernzerhof 
(PBE) [26] Generalized Gradient Approximation (GGA) 
exchange-correlation functional was used within Projector- 
Augmented-Wave (PAW) method [24,27,28]. Ga_d, In_d, and O pseu-
dopotentials were used from the VASP library. The computations were 
performed on k-point meshes of size (6 × 6 × 2) with the plane wave 
cutoff energy set at 500 eV [29]. Gaussian smearing of width 0.05 eV 
[30,31] was used to set the partial occupancies. The electronic conver-
gence criteria were set to an energy tolerance of 10− 6 eV. The structural 
convergence criteria were set to a force tolerance of 0.01 eV/Å. For the 
end members, the crystal structure of the materials was obtained from 
the Materials Project [32]. Special Quasirandom Structures (SQS) [33] 
were generated using mcsqs code within Alloy Theoretical Automated 
Toolkit (ATAT) [34] to calculate the random Ga/In occupation in the 
crystal structures for x = 0.25, 0.50, and 0.75. To ensure the reliability of 
the SQS-generated structures, three different atomic configurations for 
each composition (x = 0.25, 0.50, and 0.75) were used to calculate the 
lattice constants and bandgaps. The maximum deviations observed were 
below 0.03 Å for lattice constants and 0.04 eV in HSE06 bandgaps across 
the structures. These minimal deviations suggest that a single repre-
sentative structure is sufficient to capture the alloy behavior precisely. 
The structures employed in our computational investigations are pre-
sented in Table S5.

Atomic positions, cell shape, and cell volume were relaxed while 
optimizing the geometry of the crystal structures. Following relaxation, 
the calculation of formation energy per formula unit of (InxGa1-x)2O3 
was calculated as [35–37]: 

Eform =E[(InxGa1− x)2O3] − 2[xE(In)+ (1 − x)E(Ga)] − 3E(O2)
/

2, (1) 

where E(In), E(Ga), and E(O2) are the ground state energies of indium 
(space group: I4/mmm), gallium (space group: Cmce), and oxygen di-
mers in vacuo, respectively.

Next, the elastic constants were calculated by computing the Hessian 
matrices of directional second derivatives of energy with respect to cell 
distortions using finite differences. The elastic moduli were determined 
using the equation that involves the components of stiffness (Cij) and 
compliance (Sij) tensors following the Voigt-Reuss-Hill approximation 
[38–43] equations. The following equations provide bulk modulus (B) 
and shear modulus (G): 

BV = [C11 +C22 +C33 +2(C12 +C23 +C31)] /9 (2) 

GV = [C11 +C22 +C33 − C12 − C23 − C31)+3(C44 +C55 +C66)] /15 (3) 

BR = [S11 + S22 + S33 + 2(S12 + S23 + S31)]
− 1 (4) 

GR = 15[4(S11 + S22 + S33 − S12 − S23 − S31) + 3(S44 + S55 + S66)]
− 1

(5) 

The following equations provide average bulk and shear modulus 
[44]: 

B=(BV +BR) /2 and G=(GV +GR) /2. (6) 

Thus, the values of B and G were used to calculate Pugh’s ratio (k =

G/B) and Vickers hardness (Hv) using the equation recommended by 
Tian et al. [45–47] as: 

HV =0.92k1.137G0.708 (7) 

Furthermore, we calculate the Poisson’s ratio (v) and Young’s 
modulus (Y) using the values B and G as: 

v=(3 − 2k)/(6+2k),Y = 9G/(3+ k) (8) 

Additionally, Born stability criteria [48] were used to test the me-
chanical stability of each composition given by. 

C11 > |C12|, 2C2
13 < C33 (C11 +C12),C44 > 0, and C66 > 0 (9) 

Band structure, Crystal Orbital Hamilton Population (COHP), and 
effective masses calculations were performed using GGA functional. 
GGA and the Local Density Approximation (LDA) exchange-correlation 
functionals underestimate the electronic bandgaps [49]. Hence, in 
these calculations, HSE06 functional with 25 % of the exact exchange 
from the Hartree-Fock theory, and 75 % of the exchange from GGA is 
implemented [50,51]. This functional has predicted the experimental 
bandgaps more precisely for semiconductors and insulators [46,52]. 
Therefore, the hybrid HSEO6 functional was employed to calculate the 
electronic density of states (DOS) and optical properties. Electronic 
bandgaps were calculated using both GGA and HSE06 functional. The 
Sumo package [53] was used to calculate the effective masses of holes 
(m*

h) and electrons (m*
e) from the computed band structures.

The Phonopy [54] software package was deployed to study the 
dynamical stability of (InxGa1-x)2O3. The structure is stable if there is no 
imaginary phonon frequency; otherwise, it is dynamically unstable. We 
further analyzed the chemical bonding. The COHP analysis was done 
using the Local Orbital Basis Suite Towards Electronic-Structure 
Reconstruction (LOBSTER) [55–60]) program using the default basis 
function: Ga (3d 4s 4p), In (4d 5s 5p) and O (2s 2p). Furthermore, we 
used the Bader analysis [61–64] to calculate the effective charge 
transfer.
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3. Results

3.1. Structural parameters

Both the end members (R 3 c) and the intermediate members (P3) 
with trigonal space group contain 20 atoms, modeled using SQS [33] 
approach. In the (InxGa1-x)2O3 alloys, the cations and anions are posi-
tioned at the 12c and 18e Wyckoff positions. Table 1 presents the 
computed lattice parameters, indicating that these values increase with 
higher x values in (InxGa1-x)2O3, directly related to ionic radius 
following Vegard’s law [65]. The results are consistent with the previous 
computational results for the end members, calculated using DFT [20,
66,67]. However, a 1.5–4.5 % deviation from the experimental results 
[22,68,69] is attributed to the use of the GGA [26]. Table S1 details the 
average bond lengths of the first nearest neighbors. In Ga2O3, the bond 
length between Ga-O is approximately 1.90 Å, while the bond length for 
In-O in In2O3 is around 2.20 Å.

The formation energy calculated using Equation (1) is presented in 
Table 1. The energy values change from − 10.80 eV for each Ga2O3 
molecule to − 9.53 eV for In2O3, following a linear trend as the 
composition changes from (0 ≤ x ≤ 1). This trend shows that increasing 
[In] in (InxGa1-x)2O3 gradually decreases stability. Fig. S2 presents the X- 
ray diffraction (XRD) results for all values of x, generated using VESTA 
[70]. For pure Ga2O3, a slight deviation of 2◦ is observed at the 2θ value 
of 32◦ compared to the experimental peaks [71]. Similarly, for In2O3, the 
deviation is by a small margin of 1◦ at 31◦ [72]. Increasing the value of x 
from 0 to 1 for the alloy system consistently shifts the peak to the left, 
corresponding with increasing lattice parameters. Our XRD figure for 
the intermediate compositions is predictive, as no experimental data is 
available.

3.2. Mechanical properties

The fully relaxed structures were used to calculate the elastic and 
mechanical properties. The elastic stiffness constants (Cij) were obtained 
using VASP with the GGA functional, and the compliance tensors (Sij) 
were derived by taking the inverse of (Cij). Equations (2)–(8) were 
employed to predict bulk modulus (B), shear modulus (G), Vickers 
hardness (HV), Pugh’s ratio (k), and Young’s modulus (Y), as presented 
in Table 2. The calculated elastic constants were further used to evaluate 
the mechanical stability of all compounds in the (InxGa1-x)2O3 alloys. 
Each component of the alloy satisfies the Born stability criteria [73] as 
presented in equation (9), confirming their mechanical stability.

The calculated values of bulk moduli range from 216 GPa to 163 
GPa, while shear moduli range from 100 GPa to 67 GPa. As the [In] 
increases in (InxGa1-x)2O3, both bulk and shear moduli decrease, which 

may be attributed to the mechanical softening, consistent with the 
findings reported by Liu et al. [74]. The Pugh’s ratio varies between 0.41 
(x = 1.00) and 0.59 (x = 0.25). According to Pugh’s criteria, materials 
with k = G/B < 0.57 are considered ductile, while those with higher 
values are classified as brittle [75]. Therefore, all compositions in this 
study exhibit ductile behavior except x = 0.25, which falls in the brittle 
regime. The Vickers hardness of CdTe, a widely used solar cell material, 
is 0.49 GPa [76]. In contrast, the (InxGa1-x)2O3 alloy system exhibits 
significantly higher hardness values, ranging from 6.66 to 12.10 GPa. 
These enhanced hardness values compared to CdTe suggest that all 
members of the alloy system are suitable for use in solar cell 
applications.

3.3. Electronic properties

3.3.1. Density of states
Fig. 1 displays the local density of states (LDOS) for varying x in 

(InxGa1-x)2O3, computed using the hybrid HSE06 functional. The figure 
demonstrates the changes in electronic structure with increasing [In]. 
LDOS analysis reveals that O states dominate both below and above the 
Fermi level across all the compositions. For pure Ga2O3 (x = 0), the 
LDOS is influenced by O and Ga. As [In] is introduced, the Ga contri-
butions are progressively surpassed by In, highlighting the impact of In 
on the electronic properties. Above the Fermi level, states begin to 
appear after the bandgap for all the compositions, confirming their non- 
metallic nature and indicating that the alloys exhibit semiconducting 

Table 1 
Lattice vector lengths and formation energy per formula unit of (InxGa1-x)2O3 
computed using GGA functional.

Material Space 
Group

a (Å) c (Å) c/a Formation 
Energy (eV)

Ga2O3 R 3 c 5.05, 
5.05a, 
4.98b

13.61, 
13.61a, 
13.43b

2.69 − 10.80

(In0.25Ga0.75)2O3 P3 5.18 13.84 2.67 − 10.34
(In0.50Ga0.50)2O3 P3 5.29 14.11 2.67 − 9.99
(In0.75Ga0.25)2O3 P3 5.41 14.30 2.65 − 9.66
In2O3 R 3 c 5.57, 

5.49c, 
5.48d, 
5.48e

14.72, 
14.42c

14.49d, 
14.51e

2.64 − 9.53

a Theoretical Ref. [66].
b Experimental Ref. [68].
c Theoretical Ref. [20].
d Experimental Ref. [22].
e Experimental Ref. [69].

Table 2 
Bulk modulus (B), shear modulus (G), Young’s modulus (Y), Vickers hardness 
(HV), Pugh’s ratio (k), and Poisson’s ratio (v) for (InxGa1-x)2O3 alloys.

Material B (GPa) G (GPa) Y (GPa) HV (GPa) k v

Ga2O3 216.33 100.63 261.76 10.08 0.46 0.30
(In0.25Ga0.75)2O3 144.61 86.68 217.30 12.10 0.59 0.25
(In0.50Ga0.50)2O3 179.20 79.10 206.91 8.00 0.44 0.31
(In0.75Ga0.25)2O3 169.95 77.12 200.98 8.12 0.45 0.30
In2O3 163.19 67.59 178.17 6.66 0.41 0.31

Fig. 1. Electronic Local density of states (LDOS) for (InxGa1-x)2O3 alloys 
calculated using HSE06 functional. The Fermi energy is set at 0 eV.
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behavior.
As in Fig. 3, our bandgap calculations for the (InxGa1-x)2O3 alloy 

system show a composition-dependent bowing behavior. The bowing 
parameter, δp = 0.86 eV, was obtained using the standard bandgap 
bowing formula. 

p(x)= xp(1) + (1 − x)p(0) − x(1 − x)δp, (10) 

where x is the [In] in the alloy, while p(x) are the HSE06 functional 
bandgaps for (InxGa1-x)2O3. Our bandgap calculations show a linear 
trend with increasing [In], ranging from 4.4 eV to 2.6 eV. Kawamura 
et al. reported a bandgap of 4.68 eV for Ga2O3, calculated using Quan-
tum Espresso with the hybrid HSE03 functional [77], while the bandgap 
value for pure In2O3 was reported as 2.44 eV using DFT with hybrid 
HSE03 functional [67]. These previously reported computational results 
show strong agreement with our calculated values, as presented in 
Table 3. Furthermore, experimental results obtained from PLD, X-ray 
absorption, and emission spectroscopy show an approximate deviation 
of less than 16 % from our calculated bandgaps [22,78–80].

3.3.2. Charge transfer
Charge transfer for all the alloys of (InxGa1-x)2O3 was calculated 

using the Bader charge analysis. This represents the amount of negative 
charge in terms of elementary electronic charge (-e) transferred from Ga- 
O and In-O. The average charge transfer values are presented in 
Table S3. The charge transfer from Ga to O ranges from 1.88 e in pure 
Ga2O3 to 1.84 e in (In0.75Ga0.25)2O3. Meanwhile, the charge transfer 
from In to O remains consistent at 1.85 e across all the alloys, except for 
pure In2O3, which decreases to 1.82 e. This value for pure In2O3 aligns 
well with the findings of Karazhanov et al., who reported a charge 
transfer of 1.82 e using a similar approach [20]. As the charge trans-
ferred is greater than 1 e, the bonds are ionic in nature [52]. Based on the 
electrostatic force calculated by Allred et al. [81] the electronegativities 
of Ga, In, and O are 1.82 e, 1.49 e, and 3.50 e, respectively. The elec-
tronegativity difference in In-O bonds (2.01 e) is higher than in Ga-O 
bonds (1.68 e). However, we observe that Ga-O bonds exhibit a higher 
charge transfer value compared to In-O bonds. Hence, we suspect that 
the higher charge transfer from Ga-O bonds may be due to its shorter 
bond lengths or orbital interactions, which aligns with similar obser-
vations reported by Dumre et al. [82].

3.3.3. Crystal orbital Hamilton population
The negative projected crystal orbital Hamilton population 

(-pCOHP) calculations for all the alloy compositions were performed to 
analyze the bonding and antibonding behavior using the GGA functional 
as presented in Fig. 2. The -pCOHP analysis above the baseline indicates 
positive bonding, whereas below the baseline corresponds to anti- 
bonding interactions. The baseline itself represents no net bonding. 
The study was performed between 1.8 and 2.3 Å for the first nearest 

neighbors of (Ga-O) and (In-O). For x = 0, 0.25, and 0.50, almost all the 
population has positive bonding below the Fermi level. As [In] in-
creases, a downward peak shows antibonding. The integrated total 
COHP (iCOHP) is also calculated to provide further information on the 
total bond strength. For pure Ga2O3 (x = 0), iCOHP is − 3.88 eV. With 
the increase in [In], iCOHP becomes less negative and is − 3.14 eV for 
pure In2O3 (x = 1). The formation energy calculation in Table 1 shows a 

Table 3 
Electronic bandgap of (InxGa1-x)2O3 computed using GGA and hybrid HSE06 
functional.

Material Band gap (eV)

GGA HSE06

Ga2O3 2.41 4.40, 4.68a, 4.90b, 5.30c

(In0.25Ga0.75)2O3 1.88 3.70
(In0.50Ga0.50)2O3 1.56 3.29
(In0.75Ga0.25)2O3 1.31 3.02
In2O3 0.98 2.63, 2.44c, 3.10d, 3.0e

a Theoretical Ref. [77].
b Experimental Ref. [78].
c Experimental Ref. [79].
d Theoretical Ref. [67].
e Experimental Ref. [22].
f Experimental Ref. [80].

Fig. 2. Negative Projected Crystal Orbital Hamilton Population (-pCOHP) 
interaction of Ga-O and In-O in (InxGa1-x)2O3 for the 1st nearest neighbor 
interaction. The positive and negative values of -pCOHP represent the bonding 
and antibonding interactions respectively. The Fermi energy is set at 0 eV.

Fig. 3. a) Electronic bandgap calculated using HSE06 functional and b) Elec-
tron effective masses (m*e) and hole effective masses (m*h) of (InxGa1-x)2O3 
alloys. Here, the points represent calculated data, whereas the curves are fitted 
using sketching parameters as defined in Eq. (10).
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similar trend, with the energy values becoming less negative as [In] is 
added. Therefore, both the formation energy and the iCOHP show a 
trend where increasing [In] leads to the reduced stability of the material.

3.3.4. Effective masses
Table S4 presents the average effective masses for all the composi-

tions of (InxGa1-x)2O3 calculated using GGA functional. As [In] increases, 
the electron effective masses (m*

e) decrease from 0.27 to 0.16, while the 
hole effective masses (m*

h) increase from 2.40 to 8.50. For pure Ga2O3, 
the computational results for m*

e , with GGA + U have been reported as 
0.30 and 0.28 [19,83] and 0.16 with LDA for In2O3 [20]. The electron 
effective mass for x = 0 and x = 1 is observed along Γ to L, Z, and X 
directions, while for x = 0.25, x = 0.50, and x = 0.75, it is observed 
along the Γ to M, K, and A directions. In all the crystal structures, m*

h is 
higher than m*

e , suggesting that electrons are expected to move freely as 
the majority charge carriers.

To visualize the deviation from linearity in the physical quantity 
(p(x)), we used the bowing expression as described in Equation (10), 
where x is the [In] in the alloy, while p(1) and p(0) are the effective 
masses for pure In2O3 and Ga2O3, respectively. The bowing parameters 
are 0.043 for m*

e and 6.17 for m*
h.

The charge carrier mobility values of the (InxGa1-x)2O3 alloy system 
are summarized in Table S4. We calculated the carrier transport char-
acteristics using the relation μ = eτ/m* [84]. In our study, the electron 
mobilities range from 76.37 cm2/Vs to 110.34 cm2/Vs within the alloy 
system. As a benchmark, materials commonly employed in TCO and 
emitter layers of solar cells have electron mobilities greater than 65 
cm2/Vs [85,86]. These results, together with a low absorption coeffi-
cient (α) as shown in Fig. 5, suggest that the (InxGa1-x)2O3 alloy system 
possesses both the required transport and optical properties, making it a 
suitable candidate for use in emitter layer applications in solar cells.

3.4. Vibrational properties

As shown in Fig. 4, the phonon LDOS for all the compositions of 

(InxGa1-x)2O3 were computed using the GGA functional. These calcula-
tions confirm that all the alloys are dynamically stable, with no phonon 
LDOS in the imaginary phonon frequency region. The phonon LDOS 
reveals that O atoms vibrate at higher frequencies at around 17 THz, 
followed by Ga at 6 THz and In at 4 THz. This trend indicates that lighter 
atoms vibrate at higher frequencies than heavier atoms. Furthermore, 
small phonon LDOS bandgaps, between 13 THz and 14 THz, are 
observed for the end members, qualifying them as potential candidates 
for sound filtering and mirror applications, as any phonon of frequencies 
within the gap will not penetrate the material and will be reflected from 
the surface [87]. In contrast, the intermediate alloy compositions lack 
phonon LDOS bandgaps, disqualifying them for such applications.

3.5. Optical properties

The optical properties for all five members of the (InxGa1-x)2O3 alloy 
system were calculated using hybrid HSE06 functional. The absorption 
coefficient (α) and reflectivity (R) are plotted against photon energy, as 
shown in Fig. 5. The absorption coefficient ranges from 103 cm− 1 to 105 

cm− 1 until ℏω = 4.5 eV. Below ℏω = 2.5 eV, there is no significant rise in 
α for any alloys within the visible region. However, a noticeable rise is 
observed as the photon energy exceeds 2.5 eV. For x = 0, the (α) peak 
occurs at ℏω = 4.4 eV. With the increase in [In], the peak shifts to lower 
photon energy, dropping to 3.2 eV for x = 1. The spectral irradiance of 
the Air Mass 1.5 Global Spectrum [88] is plotted in the background, 
which peaks at ℏω = 2.4 eV and gradually approaches zero at around ℏω 
= 4.0 eV. None of the alloy compositions exhibit a significant absorption 
coefficient within the visible region. The (R) values for all the alloy 
compositions are low, ranging between 9 % and 16 % across the energy 
range of interest. For comparison, the widely used solar cell material 
CdSexTe1-x has a much higher range of reflectivity of around (15–31)% 
[89]. Therefore, the combination of lower absorption coefficient and 
reflectivity within the visible spectrum indicates that (InxGa1-x)2O3 is a 
promising candidate for an emitter layer in solar cell applications.

Fig. 4. Phonon local densities of states (LDOS) of (InxGa1-x)2O3 computed using 
GGA functional.

Fig. 5. Absorption coefficient and reflectivity curves of (InxGa1-x)2O3 alloys 
using hybrid HSE06 functional. The shaded region represents the AM 1.5 G 
solar spectrum irradiance [88].
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4. Conclusion

In summary, using first-principles methods, we have computation-
ally investigated the structural, energetic, elastic, mechanical, elec-
tronic, and optical properties of (InxGa1-x)2O3 alloy system in R 3 c 
crystal structure. Our results for the end members show strong agree-
ment with available experimental and computational data. Most of our 
results for the intermediate members are predictive in nature because of 
the lack of comparable experimental results. LDOS analysis confirms the 
semiconducting nature of all the alloys. The formation energy and the 
electronic bandgap values decreased with increasing [In]. Phonon LDOS 
and mechanical stability calculations confirm that all the alloys are 
dynamically and mechanically stable. The absorption coefficient and 
reflectivity across the entire alloy system suggest that this material is a 
promising candidate as an emitter layer in solar cell applications. This 
work should motivate further experimental work on (InxGa1-x)2O3 as a 
potential material for the emitter layer in solar cell technology.
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