Investigation of hardness in transition metal hexa-nitrides in cubic structure: A first-principles study

S. R. Kandel^{a,*}, B. B. Dumre^a, D. Gall^b, S. V. Khare^a

^aDepartment of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA

^bDepartment of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA *Corresponding Author: shreedhar.kandel@rockets.utoledo.edu

	Magnetic Moment										
Material	Transition Metal				Nitrogen			Total in the			
	s-orbital	p-orbital	d-orbital	Total	s-orbital	p-orbital	Total	Unit Cell			
CoN ₆	-0.006	-0.003	-1.531	-1.540	-0.003	0.036	0.033	-2.684			
CuN ₆	-0.001	0.003	0.044	0.046	0.002	0.062	0.064	0.860			
TcN ₆	-0.002	0.003	-0.052	-0.051	0.003	0.066	0.069	0.726			
RhN ₆	0.003	0.003	0.983	0.989	0.004	0.004	0.008	2.074			
AgN ₆	-0.001	0.006	0.022	0.027	0.002	0.088	0.090	1.134			
ReN ₆	-0.002	0.002	-0.037	-0.037	0.002	0.040	0.042	0.430			
IrN ₆	0.011	0.004	1.125	1.140	0.009	0.008	0.017	2.484			
AuN ₆	0.475	0.000	-0.020	0.455	0.002	0.004	0.006	0.982			

Table S1: Total magnetic moment found in the atomic orbitals. Only in 8 MN₆ compounds possesses the magnetic moment calculated in terms of Bohr magneton.

Group no.		М		χ			
3	Sc	Y	N/A	1.20	1.11	N/A	
4	Ti	Zr	Hf	1.32	1.22	1.23	
5	V	Nb	Та	1.45	1.23	1.33	
6	Cr	Mo	W	1.56	1.30	1.40	
7	Mn	Tc	Re	1.60	1.36	1.46	
8	Fe	Ru	Os	1.64	1.42	1.52	
9	Со	Rh	Ir	1.70	1.45	1.55	
10	Ni	Pd	Pt	1.75	1.35	1.44	
11	Cu	Ag	Au	1.75	1.42	1.21	
12	Zn	Cd	Hg	1.66	1.46	N/A	

Table S2: Electronegativity (χ) of transition metal M [1].

Figure S1: Variation of bond lengths as functions of hardness for mechanically stable MN₆.

Figure S2-1: Comparison of phonon DOS for only mechanically stable MN₆ compounds in the order of increasing hardness from top to bottom in each column. ZrN₆ is harder than ScN₆.

Phonon DOS: Only Mechanically Stable MN₆

Figure S2-2: Comparison of phonon DOS for both mechanically and vibrationally unstable MN₆ compounds.

Figure S3-1: Comparison of LDOS for only mechanically stable MN_6 compounds in the order of increasing hardness from top to bottom in each column. ZrN_6 is harder than ScN_6 . The Fermi level is set at 0 eV.

Figure S3-2: Comparison of LDOS for both mechanically and vibrationally unstable MN_6 compounds. The Fermi level is set at 0 eV.

Figure S4-1: Comparison of -pCOHP for only mechanically stable MN₆ compounds in the order of increasing hardness from top to bottom in each column. ZrN₆ is harder than ScN₆. The Fermi level is set at 0 eV.

Figure S4-2: Comparison of -pCOHP for both mechanically and vibrationally unstable MN₆ compounds. The Fermi level is set at 0 eV.

Figure S5-1(a): Electronic band structure curves for only mechanically stable MN_6 compounds in the order of increasing hardness from top to bottom in each column. HgN₆ is harder than AuN₆. The Fermi level is set at 0 eV.

Figure S5-1(b): Electronic band structure curves for only mechanically stable MN_6 compounds in the order of increasing hardness from top to bottom in each column. ReN₆ is harder than MnN_6 . The Fermi level is set at 0 eV.

Figure S5-2: Electronic band structure curves for both mechanically and vibrationally unstable MN₆ compounds. The Fermi level is set at 0 eV.

Band Structure: Unstable MN₆

1. A. L. Allred and E. G. Rochow, *A scale of electronegativity based on electrostatic force*. J. Inorg. Nucl. Chem., 1958. **5**: p. 264-268.