Mechanical and electronic properties of transition metal hexanitrides in hexagonal structure from density functional theory calculations

S. R. Kandel^{a*}, B. B. Dumre^a, D. Gall^b, S. V. Khare^a

^aDepartment of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA ^bDepartment of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

*Corresponding Author: shreedhar.kandel@rockets.utoledo.edu

Table S1: Wyckoff positions for M (3a) and N (18h) atoms in MN_6 compounds. x and z are the fractional internal free parameters denoting the coordinates for M and N atoms in unit cell respectively.

Multiplicity	Wyckoff letter	Coordinates				
		(0, 0, 0) + (2/3, 1/3, 1/3) + (1/3, 2/3, 2/3)				
18	h	(x, -x, z), (x, 2x, z), (-2x, -x, z),				
		(-x, x, -z), (2x, x, -z), (-x, -2x, -z)				
3	a	(0, 0, 0)				

	Magnetic Moment (μ_B)									
Material	Transition Metal				Nitrogen			Total in		
	s-orbital	p-orbital	d-orbital	Total	s-orbital	p-orbital	Total	Cell		
ScN_6	-0.001	0.003	0.022	0.024	0.003	0.069	0.072	1.368		
VN ₆	0.014	0.013	1.446	1.473	-0.005	-0.075	-0.08	2.979		
CrN ₆	0.02	0.022	2.281	2.323	-0.006	-0.052	-0.058	5.925		
MnN ₆	0.00	0.00	0.029	0.029	0.00	0.00	0.00	0.087		
FeN ₆	0.004	0.012	1.285	1.301	0.002	0.049	0.051	4.821		
CoN ₆	0.003	0.006	0.821	0.83	0.004	0.017	0.021	2.868		
YN ₆	-0.002	0.015	0.019	0.032	0.004	0.109	0.113	2.13		
AgN ₆	0.005	0.003	0.024	0.032	0.003	0.056	0.059	1.158		

Table S2: Total magnetic moment found in the atomic orbitals. Only 8 MN₆ compounds possess the magnetic moment calculated in terms of Bohr magneton (μ_B).

Group no.		М		X			
3	Sc	Y	N/A	1.20	1.11	N/A	
4	Ti	Zr	Hf	1.32	1.22	1.23	
5	V	Nb	Та	1.45	1.23	1.33	
6	Cr	Mo	W	1.56	1.30	1.40	
7	Mn	Tc	Re	1.60	1.36	1.46	
8	Fe	Ru	Os	1.64	1.42	1.52	
9	Co	Rh	Ir	1.70	1.45	1.55	
10	Ni	Pd	Pt	1.75	1.35	1.44	
11	Cu	Ag	Au	1.75	1.42	1.21	
12	Zn	Cd	Hg	1.66	1.46	N/A	

Table S3: Electronegativity (χ) of transition metal M [1].

Figure S1: Variation of bond length as a function of hardness for mechanically stable MN₆.

Figure S2: Phonon DOS for all mechanically stable 3d – MN₆. Presence of phonon DOS in imaginary frequency region shows vibrationally unstable compounds.

Figure S3: Phonon DOS for all mechanically stable 4d – MN₆. Presence of phonon DOS in imaginary frequency region shows vibrationally unstable compounds.

7

Figure S4: Phonon DOS for all mechanically stable 5d – MN₆. Presence of phonon DOS in imaginary frequency region shows vibrationally unstable compounds.

8

Figure S5: Variation of hardness with Pugh's ratio (*k*) showing brittle and ductile regions for all mechanically stable 3d, 4d, and 5d MN₆ compounds. All compounds having $H_V > 16$ GPa are mostly brittle.

Figure S6: Variation of B, G, E, and H_V with C_{44} for all mechanically stable MN₆ compounds.

Figure S7: Variation of H_V and Q_t with VEC for all mechanically stable MN₆ compounds.

Figure S8: LDOS for mechanically stable 3d – MN₆. The Fermi level is set at 0 eV.

Figure S10: LDOS for mechanically stable 5d – MN₆. The Fermi level is set at 0 eV.

Figure S11: -pCOHP for mechanically stable 3d – MN₆. The Fermi level is set at 0 eV.

Figure S12: -pCOHP for mechanically stable 4d – MN₆. The Fermi level is set at 0 eV.

Figure S13: -pCOHP for mechanically stable 5d – MN₆. The Fermi level is set at 0 eV.

Figure S14: Electronic band structure curves for mechanically stable 3d – MN₆. The Fermi level is set at 0 eV.

Band structure for 3d-MN₆

Wave vector

Figure S15: Electronic band structure curves for mechanically stable 4d – MN₆. The Fermi level is set at 0 eV.

Band structure for 4d-MN₆

Figure S16: Electronic band structure curves for mechanically stable $5d - MN_6$. The Fermi level is set at 0 eV.

Band structure for 5d-MN₆

References

1. A. L. Allred and E. G. Rochow, *A scale of electronegativity based on electrostatic force*. J. Inorg. Nucl. Chem., 1958. **5**: p. 264-268.