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Quasibinary solid solutions of calcite-structure carbonate minerals play an important role in rock formation. We
have investigated solid solutions with cations Ca2+, Cd2+, Mg2+ and Zn2+ by performing first-principles phase
diagram calculations for Ca1 − xZnxCO3, Cd1 − xZnxCO3, Ca1− xCdxCO3 andMg1− xZnxCO3 (0 ≤ x ≤ 1)with density
functional theory, cluster expansion andMonte Carlo simulations. The endmembers and the dolomite structures
were individually studied to analyze their structural parameters and bonding characteristics. Consolute
temperatures and continuous order-disorder transition temperatures are 1450 K for Ca1 − xZnxCO3 and 1000 K
for Cd1 − xZnxCO3, but below 100 K for Ca1 − xCdxCO3 and Mg1 − xZnxCO3. In agreement with existing literature,
consolute temperatures increase with increasing differences in cation radii. If the dolomite structures are as-
sumed to be stable, the phase diagram calculations predict that they persist to 1150 K for Ca1 − xZnxCO3, and
900 K for Cd1− xZnxCO3 before decomposition at peritectoid points. This confirms the conjectured phase diagram
for Ca1 − xZnxCO3 in (Goldsmith, 1983. Rev.Mineral. Geochemistry 11). In addition, formation energies of the do-
lomite structures were decomposed into two parts: first a volume change, then chemical exchange and relaxa-
tion. They were compared with the corresponding random solid solutions at the same bulk compositions.
(Meta)stability of the dolomite structures was demonstrated by this analysis, andwas also studied by examining
the bond lengths and cation octahedral distortions.
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1. Introduction

Calcite, and its isotructural compounds are ubiquitous in the Earth's
crust (Klein et al., 1993). Understanding them helps one evaluate rock-
forming conditions andmining endeavors. Ca2+ in calcite is oftenmixed
with other cations such as Mg2+, Mn2+, Fe2+, Zn2+, Co2+, Ni2+, Cu2+,
Pb2+, Cd2+ to form solid solutions like Ca1 − xCdxCO3 (0 ≤ x ≤ 1) and in-
termediate compounds such as dolomite CaMg(CO3)2. In addition, solid
solutions and intermediate compounds can also form without Ca2+,
such asMg1− xZnxCO3, and dolomite-structure CdMg(CO3)2. The chem-
istry of the calcite-structure carbonates influences the distribution and
transport of those cations in sedimentary rocks and geofluids. Extensive
experimental studies have been done on a few systems (Anovitz and
Essene, 1987; Birch, 1983; Boni et al., 2011; Capobianco et al., 1987;
de Capitani and Peters, 1981; Goldsmith and Graf, 1960, 1958;
Goldsmith and Northrop, 1965; Goldsmith et al., 1962; Goldsmith,
1983, 1972; Khan and Barber, 1990; Mondillo et al., 2011; Navrotsky
and Capobianco, 1987; Powell et al., 1984; Rosenberg and Champness,
1989; Rosenberg and Foit, 1979; Rosenberg, 1967, 1963a, 1963b), and
).
the mixing behaviors have been studied through phase diagram
calculations with a variety of methods. Empirical potential models and
parameters (Purton et al., 2006) were used to perform direct Monte
Carlo simulations (Binder and Heermann, 1988; Dunweg and Landau,
1993; Kohan et al., 1998; Laradji et al., 1995; Newman and Barkema,
1999) on systems such as Ca1 − xCdxCO3 (Wang and de Leeuw, 2008),
Ca1 − xMnxCO3 (Wang et al., 2011) and Ca1 − xZnxCO3 (Liu et al.,
2015). The cluster expansion (CE) formalism (Connolly and Williams,
1983; De Fontaine, 1994; Ducastelle, 1991; Laks et al., 1992; Sanchez
et al., 1984; Zunger, 1994) allows one to fit a series-type Hamiltonian
to the formation energy values of a few supercell configurations as a
set of effective cluster interactions (ECIs), pairs, triplets, quadruplets,
and higher n-tuplets to allow faster energy evaluation. The energy to
be fitted can be calculated with empirical potentials or electronic struc-
ture methods such as density functional theory (DFT) as demonstrated
for alloys (Barabash et al., 2009; Chen et al., 2015; Gao et al., 2013;
Ghosh et al., 2008; Liu and Zunger, 2009; Liu et al., 2005; Ravi et al.,
2012; van de Walle et al., 2004), semiconductors (Burton et al., 2011,
2006; Kumagai et al., 2012; Li et al., 2015; Usanmaz et al., 2015; Xue
et al., 2014), ionic compounds (Burton and van de Walle, 2012a,
2012b, 2006; Burton et al., 2012), and minerals including carbonates
(Burton and van de Walle, 2003; Vinograd et al., 2009, 2007, 2006).
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With cations Mg2+ and Ca2+ in Group 2, Zn2+ and Cd2+ in Group
12, six M1−x

A Mx
BCO3 (0 ≤ x ≤ 1,MA and MB being different cations) solid

solution systems can be derived. Burton and van de Walle (Burton and
van de Walle, 2003) studied Ca1 − xMgxCO3 and Cd1 − xMgxCO3 with
first-principles total energy cluster expansion and Monte Carlo simula-
tions to generate the phase diagrams. Each system features two-phase
fields up to ~1000 K, between the end members and the dolomite-
structure intermediate phase, plus a continuous order-disorder transi-
tion at higher temperatures, which connect tricritical points at themax-
imaof the two-phasefields. In thiswork,we studyphase relations of the
other four systems Ca1 − xZnxCO3, Cd1 − xZnxCO3, Ca1 − xCdxCO3 and
Mg1 − xZnxCO3. The radius of Zn2+ (0.74 Å) is similar to that of Mg2+

(0.72 Å), and so is Cd2+ (0.95 Å) to Ca2+ (1.00 Å). Therefore, we expect
Ca1 − xZnxCO3 and Cd1 − xZnxCO3 to behave similarly to the previous
two systems, while Ca1 − xCdxCO3 and Mg1 − xZnxCO3 should have
very shallow miscibility gaps.

The most common intermediate compound derived from calcite is
dolomite CaMg(CO3)2 because of Mg′s abundance in the Earth's crust
and dolomite's energetic favorability relative to calcite and magnesite.
Mn2+ and Fe2+ often substitute for Mg2+ in dolomite, because of
their similar cation radii. However, unlike CaMg(CO3)2 or CaMn(CO3)2,
dolomite-structure CaFe(CO3)2 is apparently metastable (Goldsmith
and Northrop, 1965). Instead, Fe2+ substitutes for Mg2+ up to 70 at.%
but not beyond (Rosenberg, 1967). Similarly, Zn2+ substitutes for
Mg2+. Supergene metal-carrying and oxygen-rich meteoric fluids
react with preexisting dolomite bodies that host Zn sulfide ores, replac-
ing Mg2+ with Zn2+ to create Zn-dolomite. The incorporation of Zn2+

can be as high as 92 at.%, but the fully substituted dolomite-structure
CaZn(CO3)2, minrecordite, is probably metastable (Boni et al., 2011;
Rosenberg and Champness, 1989). In the vicinity of Zn-ores, continuous
solution Mg1 − xZnxCO3 can also be found. Here, we aim to obtain a
deeper understanding of the energetics of ordering and/or phase sepa-
ration in calcite-structure solid solutions. We compare known experi-
mental results with our computations, and extend the discussion to
Cd-related systems Cd1 − xZnxCO3 and Ca1 − xCdxCO3. We then analyze
the (meta)stability of dolomite structures by decomposingmixing ener-
gies into two contributions: first a volume change, then chemical ex-
change and relaxation; and by examining the bond lengths and cation
octahedral distortions. Specifically, we evaluate the energetic metasta-
bility of dolomite-structure CaZn(CO3)2 at different temperatures and
estimate the temperature-upper-bound of highly substituted Zn-
dolomites.

This study only considers quasibinaries, meaning that the system is
assumed to obey a binary Gibbs phase rule with one free composition
variable. We also ignore orientational order-disorder of the anion
groups CO3

2− as previously assumed (Burton and van de Walle, 2003;
Vinograd et al., 2007).
2. Computational methods

We performed ab initio DFT computations using the Vienna Abinitio
Simulation Package (VASP) (Kresse and Furthmuller, 1996a, 1996b;
Kresse and Hafner, 1994, 1993) with the projector-augmented wave
method (PAW) (Blöchl, 1994; Kresse and Joubert, 1999) and Purdew–
Burke–Ernzerhoff (PBE) generalized gradient approximation (GGA)
(Perdew et al., 1993, 1992). We selected the potentials of Ca_sv, Cd,
Mg, Zn, C and O, where “_sv” denotes that the semi-core 3s and 3p elec-
trons of Ca are also included. The plane wave energy cutoff was 520 eV
to ensure correct cell volume and shape relaxations. The k-pointmeshes
were created with k-points per reciprocal atom (KPPRA) of 1000, lead-
ing to an error of ~0.2 meV/atom in energy from a convergence test.
Gaussian smearing was used with a sigma value as small as 0.05 eV.
The convergence criterionwas set to 10−5 eV in energy during the elec-
tronic iterations. For structural optimization, the cell volume, shape and
atomic positions were allowed to relax until stress was minimized and
force on any atom was below 0.02 eV/Å. This leads to an error of ~0.4
meV/atom.

To obtain equations of state (EOS's) of the calcite-structure end
members CaCO3, CdCO3, MgCO3 and ZnCO3 and their dolomite struc-
tures, we picked 5 volume points in each case covering the equilibrium
volume, fitted the total energies to the Birch-Murnaghan EOS (Birch,
1947), and derived equilibrium volumes, energies and bulk moduli
(Liu et al., 2014a, 2014b, 2014c).

Energy landscapes, cluster expansions and phase diagrams were
generated for systems Ca1 − xZnxCO3, Cd1 − xZnxCO3, Ca1 − xCdxCO3

and Mg1 − xZnxCO3 using the Alloy Theoretic Automated Toolkit
(ATAT) (van de Walle and Asta, 2002; van de Walle and Ceder, 2002a;
van de Walle, 2009; van de Walle et al., 2002). The MIT Ab-initio
Phase Stability (maps) (van de Walle, 2009; van de Walle et al., 2002)
code in ATAT was used to generate energy landscapes and CEs (details
in Supplementary material). With well-converged CEs, the Easy Monte
Carlo Code (emc2 and phb) (van de Walle and Asta, 2002; van de
Walle and Ceder, 2002a) in ATAT was used to perform Monte Carlo
(MC) simulations to obtain phase diagrams. A MC simulation box of
8 × 8 × 8 10-atom trigonal cells (1024 exchangeable sites) was chosen.
We used semi-grand canonical (SGC) ensemble simulations, where one
controls the chemical potential (μ) and temperature (T). The chemical

potential is defined as μ i ¼ ð∂G
.

∂ni
Þ
T;n j≠i

, where G is the Gibbs free ener-

gy, ni is the number of atoms of species i in the simulation cell. In a bina-
ry system A1 − xBx, μ=μA−μB is used as the input. Most of the phase
boundaries were obtained by identifying abrupt changes in bulk com-
position and/or long-range order scanning through μ and T axes. Long-
range order is defined here as the occupancy of each exchangeable
site relative to its value in the given starting ground state. For each μ
and T point, sufficient MC passes were used to equilibrate and average
the system to reach a composition precision of 0.01. The canonical en-
semble simulations were also performed where one controls the com-
position (x) and T to track the transition/disordering temperature of
the dolomite-structure phase. For each temperature point, 1500 MC
passes were used to average thermodynamic quantities, and 1500
passes to re-equilibrate the system after the phase transition.

We also included vibrational free energy contributions (van de
Walle and Ceder, 2002b; van de Walle, 2013, 2009; Wang et al., 2016)
to the phase diagrams. There were large variations (200 K) in the resul-
tant consolute and transition temperatures depending on the numbers
of structures included in the calculation of bond stiffness vs bond length
relations. Therefore we present those results in the Supplementary
material.

3. Results and discussion

3.1. Cell parameters of the end members and dolomite structures

Table 1 lists the lattice parameters of the 10-atom trigonal cell used
in calculations of calcite-structure CaCO3, CdCO3,MgCO3, ZnCO3 and do-
lomite structures. The prototype structure is described in Table S1 of the
Supplementary material. Lattice parameters of the 30-atom hexagonal
cell are also given for ease of comparison in Table 1. These values com-
parewell with experimental results fromGraf (Graf, 1961), with a small
and consistent overestimation due to the use of GGA in our DFT calcula-
tions (Liu et al., 2014a, 2014b, 2014c). The formula unit (f.u.) contains 5
atoms. Formation energies (ΔEf) are definedwith respect to the two end
members,

ΔE f MA
1−xM

B
xCO3

� �

¼ E MA
1−xM

B
xCO3

� �
− 1−xð ÞE MACO3

� �
−xE MBCO3

� �
ð1Þ

There are numerous reference values from the literature for ΔEf of
the dolomite-structure CaMg(CO3)2 and CdMg(CO3)2. For CaMg(CO3)2,



Table 1
Lattice paramters of the trigonal and hexagonal unit cells, volumes per formula unit
(V/f.u.), total energies per formula unit (E/f.u.), formation energies per formula unit
(ΔEf/f.u.) with respect to calcite-structure end members, and bulk moduli (B)
of CaCO3, CdCO3, MgCO3, ZnCO3 and the six dolomite structures. The formula
unit is MCO3 and values corresponding to dolomite structures have reduced formula
½ MAMB(CO3)2. The trigonal cell contains 2 formula units, while the hexagonal cell
contains 6. Unless specified, values were obtained from PAW-PBE calculations.

a (Å) α (°) ahex
(Å)

chex
(Å)

V/f.u.
(Å3)

E/f.u.
(eV)

Ef/f.u. (eV) B
(GPa)

CaCO3 6.45 46.10 5.05 17.27 63.7 −
37.374

67.1

Ref.a 6.375 46.08 4.990 17.061 61.3 67b

CdCO3 6.27 47.06 5.00 16.69 60.3 −
31.549

84.2

Ref.a 6.131 47.32 4.920 16.298 57.0 97b

MgCO3 5.75 48.06 4.68 15.23 48.2 −
35.779

105.2

Ref.a 5.675 48.18 4.633 15.016 46.5 107b

ZnCO3 5.78 48.14 4.72 15.30 49.2 −
32.196

111.7

Ref.a 5.683 48.33 4.652 15.025 46.9 124b

CaMg(CO3)2 6.09 47.03 4.86 16.22 55.3 −
36.597

−0.021 85.7

Ref.a 6.015 47.11 4.807 16.010 53.4 −0.060(3)c

−0.034e

−0.038f

−0.040g

CdMg(CO3)2 5.98 47.75 4.84 15.85 53.5 −
33.691

−0.027 88.6

Ref.a 5.90 47.78 4.777 15.641 51.5 −0.029(4)d

−0.050f

CaZn(CO3)2 6.14 46.77 4.87 16.36 56.0 −
34.780

0.005 89.6

CdZn(CO3)2 6.01 47.56 4.85 15.97 54.2 −
31.872

0.000 92.1

CaCd(CO3)2 6.34 46.72 5.03 16.92 61.8 −
34.466

−0.004 74.1

MgZn(CO3)2 5.76 48.15 4.70 15.25 48.7 −
33.993

−0.005 108.0

a Experimental values of a, α, ahex, chex and V (Graf, 1961).
b Experimental (Zhang and Reeder, 1999).
c Experimental (Navrotsky and Capobianco, 1987).
d Experimental (Capobianco et al., 1987).
e PAW-LDA (this work).
f USPP-LDA (Burton and van de Walle, 2003).
g Empirical potentials (Vinograd et al., 2007).
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we observe that our PAW-PBE value of −0.021 eV/f.u. is less negative
(structure less stable) than one experimental value of −0.060 eV/f.u.
(Navrotsky and Capobianco, 1987), or the USPP-LDA (ultrasoft
pseudopotential-local density approximation) value of −0.038 eV/f.u.
(Burton and van de Walle, 2003), or that with empirical potentials of
−0.040 eV/f.u. (Vinograd et al., 2007). To confirm that it is due to the
use of GGA potentials, we performed calculations with PAW-LDA, and
obtained very similar result−0.034 eV/f.u. as theUSPP-LDA valuemen-
tioned above. For CdMg(CO3)2, our PAW-PBE value of−0.027 eV/f.u. is
very close to the experimental value of −0.029 eV/f.u. (Capobianco et
al., 1987), but the USPP-LDA value of −0.050 eV/f.u. (Burton and van
de Walle, 2003) is much more negative. The deviations are within ex-
pected variations in state-of-the-art theoretical methods.

Bulk moduli (B) obtained from the EOS's fitting show a small and
consistent GGA underestimation relative to experimental values from
Zhang and Reeder (Zhang and Reeder, 1999) as expected with this
approximation.

3.2. Formation energy landscapes and cluster expansions

Fig. 1 shows formation energies as functions of bulk composition for
of Ca1 − xZnxCO3, Cd1 − xZnxCO3, Ca1 − xCdxCO3 andMg1 − xZnxCO3. The
behavior of these four systems can be divided into two groups: the first
group Ca1 − xZnxCO3 and Cd1 − xZnxCO3 has large differences in cation
radii, resulting in positive ΔEf for most structures; the second group,
Ca1 − xCdxCO3 and Mg1 − xZnxCO3 has small differences in cation
radii, and many more members with negative ΔEf, although the energy
scale is of order ~5 meV/f.u., more than an order of magnitude smaller
than the first group, ~100 meV/f.u.

Fig. 2 and Table 2 summarize the numbers of structures calculated
with DFT, numbers of clusters, fitted ECIs and cross validation (CV)
scores. Detailed information of the cluster sets is provided in Table S2
of the Supplementary material. Similar to what was observed in other
carbonate systems, such as Ca1 − xMgxCO3 and Cd1 − xMgxCO3

(Burton and van de Walle, 2003), the inter-layer nearest-neighbor
(nn) ECI is positive, while the intra-layer nn ECI is negative, facilitating
stabilizing the dolomite structure. In addition, the ECI trends of Ca1 −

xZnxCO3 and Cd1 − xZnxCO3 are very similar, with the energy scale of
Ca1 − xZnxCO3 larger than that of Cd1 − xZnxCO3.

Observing the DFT-calculated structures in Fig. 1, the agreement
with CE-fitted values is satisfactory. The CV scores in Table 2 are larger
for Ca1 − xZnxCO3 and Cd1 − xZnxCO3 than for Ca1 − xCdxCO3 and
Mg1 − xZnxCO3, because the overall energy values are larger. The fitting
is less satisfactory for the latter two because ΔEf values of their struc-
tures are at the limits of DFT precision. In Section 2 we mentioned the
numerical errors of the k-pointmeshes and cell parameter optimization
are ~0.2 and ~0.4meV/atom, contributing to ~2meV/f.u., comparable to
their energy scales. However, all phases here have closely related crystal
structures, which implies an order of magnitude greater precision
owing to error cancellation.

Ground-state analysis was performed by enumeration of all 136,026
symmetrically inequivalent structures with 16 or fewer exchangeable
sites per supercell. This number differs from a simple geometric series

∑8
n¼1 ð22Þn = 87,380 (2 exchangeable sites in a primitive trigonal

unit cell) because there is more than one 10-, 20-, .0.80-atom supercell,
and because some structures are identical. ΔEf of the dolomite structure
is slightly above the convex hull in Ca1 − xZnxCO3 (5 meV/f.u.), and just
below 0 in Cd1 − xZnxCO3 (−0.5 meV/f.u.). All other non-end-member
structures have positive ΔEf. In each of Fig. 1(a) and (b), between the
end members and the dolomite structure, the energy values form two
arches, suggesting regions of immiscibility. In Ca1 − xCdxCO3 and
Mg1 − xZnxCO3 some have ΔEf b 0. ΔEf of both dolomite structures are
below 0, and there are more structure energies on the convex hull in
Ca1 − xCdxCO3.

We also evaluated ΔEf of configurations with correlations corre-
sponding to random solid solutions (van deWalle et al., 2013) at differ-
ent compositions, and fitted them to a smooth curve for each system. As
expected, the curves appear up-bowing (concave) for systems Ca1 −

xZnxCO3 and Cd1 − xZnxCO3, close to 0 for Ca1 − xCdxCO3 and slightly
down-bowing (convex) for Mg1 − xZnxCO3.
3.3. Phase diagrams

Fig. 3 shows the calculated phase diagrams and Table 3 lists
consolute, peritectoid and transition temperatures. The systems
Ca1 − xZnxCO3 and Cd1 − xZnxCO3 both have miscibility gaps at
high temperature, 1450 K and 1000 K respectively. The phase bound-
aries between the Ca(Cd)-rich side and Zn-rich side are asymmetric,
leaning towards the carbonate with the smaller cation, Zn2+. This
phenomenon was also observed for other carbonate systems
(Goldsmith, 1983), Ca1 − xMgxCO3 and Cd1 − xMgxCO3 (Burton and
van de Walle, 2003; Vinograd et al., 2007), and transition metal car-
bide systems Ti1 − xZrxC and Ti1 − xHfxC (Adjaoud et al., 2009). The
phase boundaries for Ca1 − xZnxCO3 are in agreement with the scarce
high-temperature experimental data (Goldsmith and Northrop,
1965). At low temperatures, both experiments and our computation
show that the incorporation of Zn2+ into the Ca-rich side is minimal
(Lamble et al., 1997; Reeder et al., 1999; Tsusue and Holland, 1966).
Both the outlines of the miscibility gap in Ca1 − xCdxCO3 and the



Fig. 1. Formation energy landscapes of (a) Ca1 − xZnxCO3, (b) Cd1 − xZnxCO3, (c) Ca1 − xCdxCO3 and (d)Mg1 − xZnxCO3. Energy values are per formula unit, i.e. per exchangeable site. Black
markers and convex hull lines stand for ground states, and blue markers stand for the structures calculatedwith DFT and used to obtain the cluster expansions (CEs). Green crosses stand
for a 16-exchangeable-site ground-state analysis. Among the markers, hollow circles stand for DFT values, and crosses stand for CE-fitted values. Red curves stand for CE-fitted values of
random solid solution configurations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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continuous order-disorder transition line of the dolomite-structure
phase in Mg1 − xZnxCO3 close at ~100 K. Note that Ca1 − xCdxCO3

took a long simulation-time to equilibrate all the multiple ground
states, so we did more detailed SGC ensemble simulations at differ-
ent temperature points and observed the abrupt changes in x with
respect to μ in Fig. 3(e). The disappearance of these abrupt changes
(a)

(c)

Fig. 2. Effective cluster interactions (ECIs) of (a) Ca1 − xZnxCO3, (b) Cd1 − xZnxCO3, (c) Ca1 − xC
circles, red squares and green triangles stand for pair, triplet and quadruplet interactions. Conne
legend, the reader is referred to the web version of this article.)
and the smoothing of the curves suggest closing of the miscibility
gap. Wang and de Leeuw (Wang and de Leeuw, 2008) did thermody-
namic simulations with empirical potentials and calculated a
consolute temperature of 200 K, although their convex hull only
has the two end members with an up-bowing ΔEf curve of ~10
meV/f.u. (estimated from their figure). We note that these energy
(b)

(d)

dxCO3 and (d) Mg1 − xZnxCO3. ECI values have beenmultiplied by their multiplicities. Blue
cting lines are a guide to the eye. (For interpretation of the references to colour in this figure



Table 2
Numbers of structures calculated with DFT, numbers of clusters in pairs, triplets and qua-
druplets, and cross-validation (CV) scores of Ca1 − xZnxCO3, Cd1 − xZnxCO3, Ca1 − xCdxCO3

and Mg1 − xZnxCO3.

Num. of structures Num. of clusters
(pair + trip + quad)

CV score (meV)

Ca1 − xZnxCO3 42 16 + 11 6.2
Cd1 − xZnxCO3 60 16 + 11 2.4
Ca1 − xCdxCO3 42 4 + 4 + 1 0.6
Mg1 − xZnxCO3 78 5 0.4

Table 3
Consolute temperatures (TC), peritectoid points (TP) and dolomite order-disorder transi-
tion temperatures (Ttrans) of Ca1 − xZnxCO3, Cd1 − xZnxCO3, Ca1 − xCdxCO3 and
Mg1 − xZnxCO3.

TC (K) TP (K) Ttrans (K)

Ca1 − xZnxCO3 1450 1150
Cd1 − xZnxCO3 1000 900
Ca1 − xCdxCO3 b100
Mg1 − xZnxCO3 b100
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values are small and different modeling methods give different re-
sults, but the low-T miscibility gaps are apparent in both cases. For
Mg1 − xZnxCO3, the complete miscibility above 100 K matches both
geochemical observations and experimental studies (Mondillo et
al., 2011; Rosenberg and Champness, 1989).

The dolomite structures introduce another metastable state to the
phase diagrams of systems Ca1 − xZnxCO3 and Cd1 − xZnxCO3. In
Ca1 − xZnxCO3 ΔEf of the dolomite structure is 5 meV/f.u., and in
Cd1 − xZnxCO3 it is only −0.1 meV/f.u., within DFT uncertainty. With
ΔΕf ≤ 0 the dolomite structure is stable, andwithΔΕf N 0 it is metastable
relative to the two end members. The energy landscapes of these two
systems in Fig. 1(a)(b) show two arches across the end members and
the dolomite structure, suggesting immiscibility. The transition temper-
ature of the dolomite-structure phase scales with the energy difference
between its ΔEf and that of the corresponding disordered state. There-
fore, if the dolomite structure is assumed to be stable relative to the
endmembers, its single-phase field persists up to a high transition tem-
perature. This was confirmed by our SCG ensemble and canonical en-
semble simulations, taking the dolomite structure as a member of the
Fig. 3. Calculated phase diagrams of (a) Ca1 − xZnxCO3, (b) Cd1 − xZnxCO3, (c) Ca1 − xCdxCO3 a
extrapolations. In (a), dash-dotted curves stand for influence of the dolomite structure on the to
curve stands for the estimated consolute boundary, as demonstrated by the inset (e). In (d), the
calcite-structure phases are labeled as I and I′, and dolomite-structure phases as II. In (e), curve
semi-grand-canonical ensemble simulation.
ground states. In both simulations, we obtained similar transition tem-
peratures. Fig. 4 shows the long-range order abruptly dropping to 0.5
for the two systems, marking the transition temperatures of the dolo-
mite-structure phases. They are 1150 K for Ca1 − xZnxCO3 and 900 K
for Cd1 − xZnxCO3. The dolomite-structure phase is not stable enough
to split and exceed the miscibility gap. Instead, as its long-range order
sharply drops, phase separation is more energetically favorable. There-
fore, continuous order-disorder transition line, like what we've seen in
Mg1 − xZnxCO3 in Fig. 3(d), and Ca1 − xMgxCO3 and Cd1 − xMgxCO3

(Burton and van de Walle, 2003), becomes a peritectoid point. In addi-
tion, the dolomite-structure single-phase field is extremely narrow in
composition, because a stoichiometric and highly ordered configuration
is needed to maintain its relative energetic advantage below the
peritectoid point.

As indicated by the positiveΔEf, this dolomite-structure CaZn(CO3)2,
minrecordite, is metastable. However, extensive (92 at.%) substitution
of Zn2+ forMg2+ in dolomite CaMg(CO3)2 is possible. The chemical sta-
bility of this near-end solid solution should be similar to minrecordite.
As predicted by our computation, CaZn(CO3)2 decomposes above
1150 K. This confirms the conjectured phase diagram by Goldsmith
nd (d) Mg1 − xZnxCO3. Crosses are the raw data points, and curves are interpolations and
pology of the phase diagram.Hollow circles are experimental data points. In (c), the dotted
dashed curve stands for the continuous order-disorder transition points. In all 4 subfigures,
s stand for compositions with respect to chemical potentials at various temperatures in a



;

Fig. 4. Long-range order as a function of temperature for Ca0·5Zn0.5CO3 and Cd0·5Zn0.5CO3

in canonical ensemble simulations. The onsets of the abrupt drops to 0.5 mark the
transition temperatures of the dolomite-structure phases.
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(Goldsmith, 1983), where the estimated maximum thermal instability
is 600 °C (Goldsmith, 1983; Rosenberg and Champness, 1989). Such
agreement demonstrates the effectiveness of our simulation method
with DFT, CE and MC, and serves as a good prediction for the similar
case CdZn(CO3)2, where experimental data are lacking. ΔEf of this dolo-
mite structure is negative and very close to zero. It should either be sta-
ble at low temperatures, or can be approached from CdMg(CO3)2 via
cation substitution up to N90 at.%. The 900 K instability temperature
will not impede its formation in geochemical environments, because
the precipitation temperature is similar to the temperature of meteoric
fluids during the main weathering periods, within 11–23 °C (Boni et al.,
2011; Gilg et al., 2008).
3.4. Random solid solutions

We also performed CE for the molar volumes, and calculated the
composition dependent volume deviations from linearity for random
Fig. 5.Volume deviations from linearity for Ca1 − xMgxCO3, Cd1 − xMgxCO3, Ca1 − xZnxCO3,
Cd1 − xZnxCO3, Ca1 − xCdxCO3 and Mg1 − xZnxCO3. Curves stand for CE-fitted values of
random solid solution configurations. Markers stand for the dolomite structures, with
circles for DFT values and crosses for CE-fitted values.
solid solutions shown in Fig. 5, defined as:

V linear ¼ 1−xð ÞVMACO3
þ xVMBCO3

;

Volume deviation of MA
1−xM

B
xCO3 ≡

VMA
1−xM

B
xCO3

−V linear

h i

V linear
:

ð2Þ

We can see that in all six systems, the random solid solutions have
small negative deviations, below 1%. Deviations for the dolomite struc-
ture volumes are also tabulated, and they are generally more negative
than their random solid solution counterparts.

We separated the solid solution mixing into two steps, volume
change (vc) and chemical exchange and relaxation (xc-rlx), and ob-
serve the energy changeswith respect to the endmembers. The two en-
ergy changes are defined as:

ΔEvc MA
1−xM

B
xCO3

� �
¼ 1−xð Þ EMACO3

VMA
1−xM

B
xCO3

� �
−EMACO3

VMACO3

� �h i

þ x EMBCO3
VMA

1−xM
B
xCO3

� �
−EMBCO3

VMBCO3

� �h i
;

ΔExc−rlx MA
1−xM

B
xCO3

� �

¼ E MA
1−xM

B
xCO3

� �
− 1−xð ÞEMACO3

VMA
1−xM

B
xCO3

� �
−xEMBCO3

VMA
1−xM

B
xCO3

� �

ΔE f ¼ ΔEvc þ ΔExc−rlx; ð3Þ

where EMACO3
and EMBCO3

denote energies depending on the EOS's of the
two endmembersMACO3 andMBCO3.ΔEvc evaluates the energy change
from expansion/contraction of the end member structures to the vol-
umeof the solid solution,whileΔExc−rlxmeasures the effect of chemical
exchange, solution cell shape and atomic position relaxation.

Fig. 6 showsΔEvc andΔExc−rlx of random solid solutions and the do-
lomite structures. The energy scale is larger than that of ΔEf, and a large
part of ΔEvc is canceled out by ΔExc−rlx, leading to ΔEf in Fig. 1. The
curves exhibit asymmetry, leaning towards the end members with the
smaller cations, as in (Adjaoud et al., 2009; Burton et al., 2006). This
phenomonon can be explained by examining the shape of EOS's of the
end members. It takes more energy for the structure to contract than
to expand by the same amount from the equilibriumvolume. Therefore,
assuming volume deviations from linearity of random solid solutions
are small, as demonstrated above, it pushes the highest point of the
ΔEvc curve from x = 0.5 closer to the smaller end member's side. The
Fig. 6. Volume change and exchange-relaxation energies of Ca1 − xMgxCO3, Cd1 −

xMgxCO3, Ca1 − xZnxCO3, Cd1 − xZnxCO3, Ca1 − xCdxCO3 and Mg1 − xZnxCO3. Values are
per formula unit, i.e. per exchangeable site. Curves stand for CE-fitted values of random
solid solution configurations, with solid above the x-axis for the volume change
energies, and dashed below for the exchange-relaxation energies. Markers stand for the
dolomite structures, with “+” above and “×” below the x-axis.
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outcome is that it takes more energy to substitute a smaller ion with a
larger one than vice versa.

In addition, the small difference between the volumes of the ordered
dolomite structure and the corresponding random solid solution is neg-
ligible when it comes toΔEvc, but difference of the atomic arrangements
plays a major role in ΔExc−rlx, which explains the energetic difference
between them; i.e. the dolomite structure is more favorable than the
random solid solution. This is in agreement with a study by Chan and
Zunger (Chan and Zunger, 2009) on the step-wise energy changes of
random solid solution Ca0·5Mg0.5CO3 and dolomite CaMg(CO3)2. They
made finer division of steps, and stated that the internal relaxation of
carbonate systems compensates for the volume mismatch, leading to
the energetic stabilization of the solution. The dolomite structure is
even more favorable because the CO3

2− anion groups are not distorted,
as they are in random solid solutions. The energetic advantage for stabil-
ity of these dolomite structures is further explored in Section 3.5, by
studying various bonds and octahedral distortions, in comparison with
their respective end member carbonates.

3.5. Structural analysis

Here we study the lengths (d) of various bonds and angles of MO6

octahedra (αoct) in CaCO3, CdCO3, MgCO3, ZnCO3 and the six dolomite
structures. Values are listed in Table 4. αoct is defined as the O-M-O
angle approximately along the trigonal [111] direction. For these car-
bonates, all values of αoct are slightly above 90°. Differences of bond
lengths (Δd) and angles (Δαoct) in the dolomite structures are also
given. These are defined differently for different bonds, following,

Δd C‐Oð Þ ¼ d C‐O in dolomiteð Þ−½ d C‐O in MACO3

� �
−½ d C‐O in MBCO3

� �
;

Δd MA‐MB
� �

¼ d MA‐MB in dolomite
� �

−½ d M‐M in MACO3

� �
−½ d M‐M in MBCO3

� �
;

Δd Mi‐O
� �

¼ d Mi‐O in dolomite
� �

−d M‐O in MiCO3

� �
;

Δαoct Mi
� �

¼ αoct Mi in dolomite
� �

−αoct M in MiCO3

� �
;

ð4Þ

where M is the metal in MiCO3 (i = A, B) for ease of listing.
Table 4
Various bond lengths (d) and angles of MO6 octahedra (αoct) in CaCO3, CdCO3, MgCO3,
ZnCO3, and the six dolomite structures. M stands for themetal element, andMA, MB stand
for the first and second metal elements in the dolomite structures. Differences of the two
quantities in the dolomite structures from those in the end members are also given. (See
main text for definition of differences.)

d (Å) αoct (°)

C-O M-M M-O M

CaCO3 1.300 4.097 2.388 92.55 92.43a

CdCO3 1.299 4.007 2.339 91.74
MgCO3 1.297 3.703 2.126 91.90 91.75a

ZnCO3 1.298 3.726 2.144 91.70 91.54a

C-O MA-MB MA-O MB-O MA MB

CaMg(CO3)2 1.298 3.893 2.408 2.109 92.70 91.45
CdMg(CO3)2 1.298 3.846 2.358 2.108 91.83 91.15
CaZn(CO3)2 1.299 3.908 2.389 2.140 93.48 91.24
CdZn(CO3)2 1.299 3.865 2.345 2.138 92.38 91.00
CaCd(CO3)2 1.299 4.049 2.380 2.348 92.67 91.29
MgZn(CO3)2 1.297 3.712 2.116 2.152 91.93 91.57

Difference from end members

C-O MA-MB MA-O MB-O MA MB

CaMg(CO3)2 0.000 −0.007 0.020 −0.017 0.15 −0.45
CdMg(CO3)2 0.000 −0.009 0.018 −0.017 0.09 −0.75
CaZn(CO3)2 0.000 −0.004 0.002 −0.004 0.93 −0.46
CdZn(CO3)2 0.000 −0.002 0.006 −0.006 0.64 −0.70
CaCd(CO3)2 0.000 −0.003 −0.007 0.008 0.12 −0.45
MgZn(CO3)2 0.000 −0.003 −0.010 0.009 0.03 −0.13

a (Rosenberg and Foit, 1979).
Values of d for the C\\O bonds show no change, andminimal chang-
es for MA-MB, MA-O and MB-O. This is also in agreement with the state-
ment of Chan and Zunger (Chan and Zunger, 2009), that solid solution
structures with anion groups rather than single atoms havemore inter-
nal degrees of freedom to let the atoms adjust to their optimal positions
to facilitate optimal bonding, close to their end member chemical envi-
ronments, hence theminimal changes in values of d. In addition, among
all six dolomite structures, CaMg(CO3)2 and CdMg(CO3)2 exhibit the
largest changes in MA-MB, MA-O and MB-O, twice or more than the
rest, echoing the largest magnitude of ΔEf (highest stability) in Table
1. It appears that these small adjustments are essential to stabilizing
the dolomite structures.

The high correlation between experimental results of MO6 octahe-
dral distortion and ΔEf discussed by Rosenberg and Foit (Rosenberg
and Foit, 1979) is also observed here. There is a consistent overestima-
tion of ~0.15° relative to the tabulated data (Rosenberg and Foit,
1979). Assuming MgCO3 represents an ideal configuration, αoct of
ZnCO3 deviates from that of MgCO3 by −0.20°. Therefore dolomite
structures with Zn2+ are less stable than their Mg2+ counterparts. In
addition, mentioned but omitted in the consideration of energetics is
the influence of the smaller cation's octahedral distortion on the larger
cation's in the dolomite structure. This can be seen from the differences
of αoct values of the dolomite structures relative to their end members.
In CaMg(CO3)2 and CdMg(CO3)2 the octahedral distortions of the small-
er cation Mg2+ are reduced, by −0.45° and −0.75°, respectively, and
those of the larger cations Ca2+ and Cd2+ are slightly increased, by
0.15° and 0.09°, respectively. However, in CaZn(CO3)2 and CdZn(CO3)2,
the distortions of the smaller cation Zn2+ are reduced by about the
same amount, but those of Ca2+ and Cd2+ are substantially increased,
by 0.93° and 0.64°, respectively. The inclusion of Zn2+ is therefore
more problematic because Ca2+ and Cd2+ have ionic radii close to the
maximum that can be tolerated in octahedral coordination (Rosenberg
and Foit, 1979).
4. Conclusion

We performed first-principles phase diagram calculations for the
four quasibinary carbonate systems Ca1 − xZnxCO3, Cd1 − xZnxCO3,
Ca1 − xCdxCO3 andMg1 − xZnxCO3 (0 ≤ x ≤ 1) with DFT, CE andMC sim-
ulations. The end members and the dolomite structures were individu-
ally studied to analyze their structural parameters and bonding
characteristics. Consolute temperatures and continuous order-disorder
transition temperatures are 1450 K for Ca1 − xZnxCO3 and 1000 K for
Cd1 − xZnxCO3, but below 100 K for Ca1 − xCdxCO3 and Mg1 − xZnxCO3.
In agreement with existing literature, consolute temperatures increase
with increasing differences in cation radii. If dolomite structures are as-
sumed to be stable, they persist to 1150 K for Ca

1 − x
ZnxCO3, and 900 K

for Cd1 − xZnxCO3 before decomposition at peritectoid points. This con-
firms the conjectured phase diagram for Ca1 − xZnxCO3 (Goldsmith,
1983). In addition, ΔEf of the dolomite structures were decomposed
into two parts: first a volume change, then chemical exchange and re-
laxation. They were compared with their corresponding random solid
solutions at the same bulk compositions. (Meta)stability of the dolomite
structures was demonstrated by this division of energy, and was also
studied by examining the bond lengths and cation octahedral
distortions.
Acknowledgements

The computing for this project was performed at the Tandy
Supercomputing Center and Ohio Supercomputer Center (OSC)
(Ohio-Supercomputer-Center, 1987). We thank the National Science
Foundation grant CMMI 1234777 and 1629239 for funding this
work.



144 Z.T.Y. Liu et al. / Chemical Geology 443 (2016) 137–145
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemgeo.2016.09.024.
References

Adjaoud, O., Steinle-Neumann, G., Burton, B.P., van de Walle, A., 2009. First-principles
phase diagram calculations for the HfC–TiC, ZrC–TiC, and HfC–ZrC solid solutions.
Phys. Rev. B 80, 134112. http://dx.doi.org/10.1103/PhysRevB.80.134112.

Anovitz, L.M., Essene, E.J., 1987. Phase equilibria in the system CaCO3-MgCO3-FeCO3.
J. Petrol. 28, 389–415. http://dx.doi.org/10.1093/petrology/28.2.389.

Barabash, S.V., Chepulskii, R.V., Blum, V., Zunger, A., 2009. First-principles determination
of low-temperature order and ground states of Fe-Ni, Fe-Pd, and Fe-Pt. Phys. Rev. B
80, 220201. http://dx.doi.org/10.1103/PhysRevB.80.220201.

Binder, K., Heermann, D.W., 1988. Monte Carlo Simulation in Statistical Physics. Springer-
Verlag, New York.

Birch, F., 1947. Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824.
Birch, W.D., 1983. Zincian dolomite from broken hill, New South Wales. J. Geol. Soc. Aust.

30, 85–87. http://dx.doi.org/10.1080/00167618308729238.
Blöchl, P.E., 1994. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979.

http://dx.doi.org/10.1103/PhysRevB.50.17953.
Boni, M., Mondillo, N., Balassone, G., 2011. Zincian dolomite: a peculiar dedolomitization

case? Geology 39, 183–186. http://dx.doi.org/10.1130/G31486.1.
Burton, B.P., van de Walle, A., 2003. First-principles-based calculations of the CaCO3-

MgCO3 and CdCO3-MgCO3 subsolidus phase diagrams. Phys. Chem. Miner. 30,
88–97. http://dx.doi.org/10.1007/s00269-002-0294-y.

Burton, B.P., van de Walle, A., 2006. First-principles phase diagram calculations for the
system NaCl-KCl: the role of excess vibrational entropy. Chem. Geol. 225, 222–229.
http://dx.doi.org/10.1016/J.Chemgeo.2005.08.016.

Burton, B.P., van de Walle, A., 2012a. First principles phase diagram calculations for the
octahedral-interstitial system αTiOX, 0 ≤ X ≤ 1/2. Calphad 39, 97–103. http://dx.doi.
org/10.1016/j.calphad.2012.09.004.

Burton, B.P., van de Walle, A., 2012b. First principles phase diagram calculations for the
octahedral-interstitial system HfOX, 0 ≤ X ≤ 1/2. Calphad 37, 151–157. http://dx.doi.
org/10.1016/j.calphad.2011.12.011.

Burton, B.P., van deWalle, A., Kattner, U., 2006. First principles phase diagram calculations
for the wurtzite-structure systems AlN–GaN, GaN–InN, and AlN–InN. J. Appl. Phys.
100, 113528. http://dx.doi.org/10.1063/1.2372309.

Burton, B.P., Demers, S., van deWalle, A., 2011. First principles phase diagram calculations
for the wurtzite-structure quasibinary systems SiC-AlN, SiC-GaN and SiC-InN. J. Appl.
Phys. 110, 023507. http://dx.doi.org/10.1063/1.3602149.

Burton, B.P., van de Walle, A., Stokes, H.T., 2012. First principles phase diagram calcula-
tions for the octahedral-interstitial system ZrOX, 0 ≤ X ≤ 1/2. J. Phys. Soc. Jpn. 81,
014004. http://dx.doi.org/10.1143/JPSJ.81.014004.

Capobianco, C., Burton, B.P., Davidson, P.M., Navrotsky, A., 1987. Structural and calorimet-
ric studies of order-disorder in CdMg(CO3)2. J. Solid State Chem. 71, 214–223. http://
dx.doi.org/10.1016/0022-4596(87)90161-7.

Chan, J.A., Zunger, A., 2009. II-VI oxides phase separate whereas the corresponding car-
bonates order: the stabilizing role of anionic groups. Phys. Rev. B 80, 165201.
http://dx.doi.org/10.1103/PhysRevB.80.165201.

Chen, W.Z., Xu, G.L., Martin-Bragado, I., Cui, Y.W., 2015. Non-empirical phase equilibria in
the Cr-Mo system: a combination of first-principles calculations, cluster expansion
and Monte Carlo simulations. Solid State Sci. 41, 19–24. http://dx.doi.org/10.1016/j.
solidstatesciences.2015.01.012.

Connolly, J.W.D., Williams, A.R., 1983. Density-functional theory applied to phase-trans-
formations in transition-metal alloys. Phys. Rev. B 27, 5169–5172. http://dx.doi.org/
10.1103/PhysRevB.27.5169.

de Capitani, C., Peters, T., 1981. The solvus in the system MnCO3-CaCO3. Contrib. Mineral.
Petrol. 76, 394–400. http://dx.doi.org/10.1007/BF00371481.

De Fontaine, D., 1994. Cluster approach to order-disorder transformations in alloys. Solid
State Phys. - Adv. Res. Appl. 47 (47), 33–176.

Ducastelle, F., 1991. Order and Phase Stability in Alloys. Elsevier Science, New York.
Dunweg, B., Landau, D.P., 1993. Phase-diagram and critical-behavior of the Si-Ge

unmixing transition - a Monte-Carlo study of a model with elastic degrees of free-
dom. Phys. Rev. B 48, 14182–14197. http://dx.doi.org/10.1103/Physrevb.48.14182.

Gao,M.C., Suzuki, Y., Schweiger, H., Dogan, O.N., Hawk, J., Widom,M., 2013. Phase stability
and elastic properties of Cr-V alloys. J. Physics-Condensed Matter 25, 075402. http://
dx.doi.org/10.1088/0953-8984/25/7/075402.

Ghosh, G., van de Walle, A., Asta, M., 2008. First-principles calculations of the structural
and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al–TM
(TM = Ti, Zr and Hf) systems: a comparison of cluster expansion and supercell
methods. Acta Mater. 56, 3202–3221. http://dx.doi.org/10.1016/j.actamat.2008.03.
006.

Gilg, H.A., Boni, M., Hochleitner, R., Struck, U., 2008. Stable isotope geochemistry of car-
bonate minerals in supergene oxidation zones of Zn–Pb deposits. Ore Geol. Rev. 33,
117–133. http://dx.doi.org/10.1016/j.oregeorev.2007.02.005.

Goldsmith, J.R., 1972. Cadmium dolomite and the system CdCO3-MgCO3. J. Geol. 80,
617–626.

Goldsmith, J.R., 1983. Phase relations of rhombohedral carbonates. Rev. Mineral.
Geochem. 11, 49–76.

Goldsmith, J.R., Graf, D.L., 1958. Structural and compositional variations in some natural
dolomites. J. Geol. 66, 678–693.
Goldsmith, J.R., Graf, D.L., 1960. Subsolidus relations in the system CaCO3-MgCO3-MnCO3.
J. Geol. 68, 324–335.

Goldsmith, J.R., Northrop, D.A., 1965. Subsolidus phase relations in the systems CaCO3 −
MgCO3 − CoCO3 and CaCO3 − MgCO3 − NiCO3. J. Geol. 73, 817–829.

Goldsmith, J.R., Graf, D.L., Witters, J., Northrop, D.A., 1962. Studies in the system CaCO3-
MgCO3-FeCO3: 1. Phase relations; 2. A method for major-element spectrochemical
analysis; 3. compositions of some ferroan dolomites. J. Geol. 70, 659–688. http://dx.
doi.org/10.1086/626865.

Graf, D.L., 1961. Crystallographic tables for the rhombohedral carbonates. Am. Mineral.
46, 1283–1316.

Khan, M.R., Barber, D.J., 1990. Composition-related microstructures in zinc-bearing car-
bonate assemblages from Broken Hill, New South Wales. Mineral. Petrol. 41,
229–245. http://dx.doi.org/10.1007/BF01168497.

Klein, C., Hurlbut, C.S., Dana, J.D., 1993. Manual of Mineralogy. Wiley.
Kohan, A.F., Tepesch, P.D., Ceder, G., Wolverton, C., 1998. Computation of alloy phase di-

agrams at low temperatures. Comput. Mater. Sci. 9, 389–396. http://dx.doi.org/10.
1016/S0927-0256(97)00168-7.

Kresse, G., Furthmuller, J., 1996a. Efficiency of ab-initio total energy calculations formetals
and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50.
http://dx.doi.org/10.1016/0927-0256(96)00008-0.

Kresse, G., Furthmuller, J., 1996b. Efficient iterative schemes for ab initio total-energy cal-
culations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186. http://dx.doi.
org/10.1103/PhysRevB.54.11169.

Kresse, G., Hafner, J., 1993. Ab initio molecular dynamics for liquidmetals. Phys. Rev. B 47,
558–561.

Kresse, G., Hafner, J., 1994. Ab initio molecular-dynamics simulation of the liquid-metal–
amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269.
http://dx.doi.org/10.1103/PhysRevB.49.14251.

Kresse, G., Joubert, D., 1999. From ultrasoft pseudopotentials to the projector augmented-
wave method. Phys. Rev. B 59, 1758–1775. http://dx.doi.org/10.1103/PhysRevB.59.
1758.

Kumagai, Y., Soda, Y., Oba, F., Seko, A., Tanaka, I., 2012. First-principles calculations of the
phase diagrams and band gaps in CuInSe2 - CuGaSe2 and CuInSe2 -CuAlSe2
pseudobinary systems. Phys. Rev. B 85, 033203. http://dx.doi.org/10.1103/
PhysRevB.85.033203.

Laks, D.B., Ferreira, L.G., Froyen, S., Zunger, A., 1992. Efficient cluster-expansion for substi-
tutional systems. Phys. Rev. B 46, 12587–12605. http://dx.doi.org/10.1103/PhysRevB.
46.12587.

Lamble, G.M., Reeder, R.J., Northrup, P.A., 1997. Characterization of heavy metal incorpo-
ration in calcite by XAFS spectroscopy. Le J. Phys. IV 7. http://dx.doi.org/10.1051/jp4:
1997238 C2-793–C2-797.

Laradji, M., Landau, D.P., Dunweg, B., 1995. Structural-properties of Si1-xGex alloys - a
Monte-Carlo simulation with the Stillinger-Weber potential. Phys. Rev. B 51,
4894–4902. http://dx.doi.org/10.1103/Physrevb.51.4894.

Li, X.K., Xue, H.T., Tang, F.L., Lu, W.J., 2015. First-principles calculation of sulfur-selenium
segregation in ZnSe1-xSx: the role of lattice vibration. Mater. Sci. Semicond. Process.
39, 96–102. http://dx.doi.org/10.1016/j.mssp.2015.03.024.

Liu, J.Z., Zunger, A., 2009. Thermodynamic theory of epitaxial alloys: first-principles
mixed-basis cluster expansion of (In, Ga)N alloy film. J. Phys. Condens. Matter 21,
295402. http://dx.doi.org/10.1088/0953-8984/21/29/295402.

Liu, J.Z., van de Walle, A., Ghosh, G., Asta, M., 2005. Structure, energetics, and mechanical
stability of Fe-Cu bcc alloys from first-principles calculations. Phys. Rev. B 72, 144109.
http://dx.doi.org/10.1103/PhysRevB.72.144109.

Liu, Z.T.Y., Gall, D., Khare, S.V., 2014a. Electronic and bonding analysis of hardness in py-
rite-type transition-metal pernitrides. Phys. Rev. B 90, 134102.

Liu, Z.T.Y., Zhou, X., Gall, D., Khare, S.V., 2014b. First-principles investigation of the struc-
tural, mechanical and electronic properties of the NbO-structured 3d, 4d and 5d tran-
sition metal nitrides. Comput. Mater. Sci. 84, 365–373. http://dx.doi.org/10.1016/j.
commatsci.2013.12.038.

Liu, Z.T.Y., Zhou, X., Khare, S.V., Gall, D., 2014c. Structural, mechanical and electronic prop-
erties of 3d transitionmetal nitrides in cubic zincblende, rocksalt and cesium chloride
structures: a first-principles investigation. J. Physics-Condensed Matter 26, 25404.
http://dx.doi.org/10.1088/0953-8984/26/2/025404.

Liu, X., Lu, X., Liu, X., Zhou, H., 2015. Atomistic simulation on mixing thermodynamics of
calcite-smithsonite solid solutions. Am. Mineral. 100, 172–180. http://dx.doi.org/10.
2138/am-2015-4815.

Mondillo, N., Boni, M., Balassone, G., Grist, B., 2011. In search of the lost zinc: A lesson
from the Jabali (Yemen) nonsulfide zinc deposit. J. Geochem. Explor. 108, 209–219.
http://dx.doi.org/10.1016/j.gexplo.2011.02.010.

Navrotsky, A., Capobianco, C., 1987. Enthalpies of formation of dolomite and of magnesian
calcites. Am. Mineral. 72, 782–787.

Newman, M.E.J., Barkema, G.T., 1999. Monte Carlo Methods in Statistical Physics.
Clarendon Press, Oxford.

Ohio-Supercomputer-Center, 1987. Ohio Supercomputer Center [WWW Document].
http://osc.edu/ark:/19495/f5s1ph73.

Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.,
1992. Atoms, molecules, solids, and surfaces: applications of the generalized gradient
approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687. http://dx.
doi.org/10.1103/PhysRevB.46.6671.

Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.,
1993. Atoms, molecules, solids, and surfaces - applications of the generalized gradient
approximation for exchange and correlation (Vol 46, Pg 6671, 1992). Phys. Rev. B 48,
4978. http://dx.doi.org/10.1103/Physrevb.48.4978.2.

Powell, R., Condliffe, D.M., Condliffe, E., 1984. Calcite-dolomite geothermometry in the
system CaCO3-MgCO3-FeCO3: an experimental study. J. Metamorph. Geol. 2, 33–41.
http://dx.doi.org/10.1111/j.1525-1314.1984.tb00283.x.

doi:10.1016/j.chemgeo.2016.09.024
doi:10.1016/j.chemgeo.2016.09.024
http://dx.doi.org/10.1103/PhysRevB.80.134112
http://dx.doi.org/10.1093/petrology/28.2.389
http://dx.doi.org/10.1103/PhysRevB.80.220201
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0020
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0020
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0025
http://dx.doi.org/10.1080/00167618308729238
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1130/G31486.1
http://dx.doi.org/10.1007/s00269-002-0294-y
http://dx.doi.org/10.1016/J.Chemgeo.2005.08.016
http://dx.doi.org/10.1016/j.calphad.2012.09.004
http://dx.doi.org/10.1016/j.calphad.2011.12.011
http://dx.doi.org/10.1063/1.2372309
http://dx.doi.org/10.1063/1.3602149
http://dx.doi.org/10.1143/JPSJ.81.014004
http://dx.doi.org/10.1016/0022-4596(87)90161-7
http://dx.doi.org/10.1103/PhysRevB.80.165201
http://dx.doi.org/10.1016/j.solidstatesciences.2015.01.012
http://dx.doi.org/10.1016/j.solidstatesciences.2015.01.012
http://dx.doi.org/10.1103/PhysRevB.27.5169
http://dx.doi.org/10.1007/BF00371481
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0105
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0105
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0110
http://dx.doi.org/10.1103/Physrevb.48.14182
http://dx.doi.org/10.1088/0953-8984/25/7/075402
http://dx.doi.org/10.1016/j.actamat.2008.03.006
http://dx.doi.org/10.1016/j.actamat.2008.03.006
http://dx.doi.org/10.1016/j.oregeorev.2007.02.005
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0135
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0135
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0135
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0135
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0140
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0140
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0145
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0145
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0150
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0150
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0150
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0150
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0150
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0155
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0155
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0155
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0155
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0155
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0155
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0155
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0155
http://dx.doi.org/10.1086/626865
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0165
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0165
http://dx.doi.org/10.1007/BF01168497
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0175
http://dx.doi.org/10.1016/S0927-0256(97)00168-7
http://dx.doi.org/10.1016/S0927-0256(97)00168-7
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0195
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0195
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.85.033203
http://dx.doi.org/10.1103/PhysRevB.85.033203
http://dx.doi.org/10.1103/PhysRevB.46.12587
http://dx.doi.org/10.1103/PhysRevB.46.12587
http://dx.doi.org/10.1051/jp4:1997238
http://dx.doi.org/10.1051/jp4:1997238
http://dx.doi.org/10.1103/Physrevb.51.4894
http://dx.doi.org/10.1016/j.mssp.2015.03.024
http://dx.doi.org/10.1088/0953-8984/21/29/295402
http://dx.doi.org/10.1103/PhysRevB.72.144109
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0245
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0245
http://dx.doi.org/10.1016/j.commatsci.2013.12.038
http://dx.doi.org/10.1016/j.commatsci.2013.12.038
http://dx.doi.org/10.1088/0953-8984/26/2/025404
http://dx.doi.org/10.2138/am-2015-4815
http://dx.doi.org/10.2138/am-2015-4815
http://dx.doi.org/10.1016/j.gexplo.2011.02.010
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0270
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0270
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0275
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0275
http://osc.edu/ark:/19495/f5s1ph73
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/Physrevb.48.4978.2
http://dx.doi.org/10.1111/j.1525-1314.1984.tb00283.x


145Z.T.Y. Liu et al. / Chemical Geology 443 (2016) 137–145
Purton, J.A., Allan, N.L., Lavrentiev, M.Y., Todorov, I.T., Freeman, C.L., 2006. Computer sim-
ulation of mineral solid solutions. Chem. Geol. 225, 176–188. http://dx.doi.org/10.
1016/j.chemgeo.2005.08.032.

Ravi, C., Panigrahi, B.K., Valsakumar, M.C., van de Walle, A., 2012. First-principles calcula-
tion of phase equilibrium of V-Nb, V-Ta, and Nb-Ta alloys. Phys. Rev. B 85, 054202.
http://dx.doi.org/10.1103/PhysRevB.85.054202.

Reeder, R.J., Lamble, G.M., Northrup, P.A., 1999. XAFS study of the coordination and local
relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. Am. Min-
eral. 84, 1049–1060. http://dx.doi.org/10.2138/am-1999-7-807.

Rosenberg, P.E., 1963a. Synthetic solid solutions in systems MgCO3-FeCO3 and MnCO3-
FeCO3. Am. Mineral. 48, 1396.

Rosenberg, P.E., 1963b. Subsolidus relations in the system CaCO3-FeCO3. Am. J. Sci. 261,
683–689. http://dx.doi.org/10.2475/ajs.261.7.683.

Rosenberg, P.E., 1967. Subsolidus relations in the system CaCO3-MgCO3-FeCO3 between
350 and 550 °C. Am. Mineral. 52, 787–796.

Rosenberg, P.E., Champness, P.E., 1989. Zincian dolomites and associated carbonates from
the Warynski mine, Poland: an AEM investigation. Am. Mineral. 74, 461–465.

Rosenberg, P.E., Foit, F.F., 1979. The stability of transition metal dolomites in carbonate
systems: a discussion. Geochim. Cosmochim. Acta 43, 951–955. http://dx.doi.org/
10.1016/0016-7037(79)90085-1.

Sanchez, J.M., Ducastelle, F., Gratias, D., 1984. Generalized cluster description of multi-
component systems. Physica A 128, 334–350. http://dx.doi.org/10.1016/0378-
4371(84)90096-7.

Tsusue, A., Holland, H.D., 1966. The coprecipitation of cations with CaCO3-III. The
coprecipitation of Zn2+ with calcite between 50 and 250 °C. Geochim. Cosmochim.
Acta 30, 439–453. http://dx.doi.org/10.1016/0016-7037(66)90072-X.

Usanmaz, D., Nath, P., Plata, J.J., Hart, G.L.W., Takeuchi, I., Nardelli, M.B., Fornari, M.,
Curtarolo, S., 2015. First principles thermodynamical modeling of the binodal and
spinodal curves in lead chalcogenides. Phys. Chem. Chem. Phys. 18, 5005–5011.
http://dx.doi.org/10.1039/C5CP06891F.

van deWalle, A., 2009. Multicomponent multisublattice alloys, nonconfigurational entro-
py and other additions to the Alloy Theoretic Automated Toolkit. Calphad 33,
266–278. http://dx.doi.org/10.1016/J.Calphad.2008.12.005.

van de Walle, A., 2013. Methods for first-principles alloy thermodynamics. JOM J. Miner.
Met. Mater. Soc. 65, 1523–1532. http://dx.doi.org/10.1007/S11837-013-0764-3.

van de Walle, A., Asta, M., 2002. Self-driven lattice-model Monte Carlo simulations of
alloy thermodynamic properties and phase diagrams. Model. Simul. Mater. Sci. Eng.
10, 521–538.

van deWalle, A., Ceder, G., 2002a. Automating first-principles phase diagram calculations.
J. Phase Equilibria 23, 348–359.
van de Walle, A., Ceder, G., 2002b. The effect of lattice vibrations on substitutional
alloy thermodynamics. Rev. Mod. Phys. 74, 11–45. http://dx.doi.org/10.1103/
Revmodphys.74.11.

van de Walle, A., Asta, M., Ceder, G., 2002. The Alloy Theoretic Automated Toolkit: a user
guide. Calphad-Computer Coupling Phase Diagrams Thermochem. 26, 539–553.
http://dx.doi.org/10.1016/S0364-5916(02)80006-2.

van deWalle, A., Moser, Z., Gasior, W., 2004. First-principles calculation of the Cu-Li phase
diagram. Arch. Metall. Mater. 49, 535–544.

van deWalle, A., Tiwary, P., de Jong, M., Olmsted, D.L., Asta, M., Dick, A., Shin, D., Wang, Y.,
Chen, L.Q., Liu, Z.K., 2013. Efficient stochastic generation of special quasirandom
structures. Calphad-Computer Coupling Phase Diagrams Thermochem. 42, 13–18.
http://dx.doi.org/10.1016/J.Calphad.2013.06.006.

Vinograd, V.L., Winkler, B., Putnis, A., Gale, J.D., Sluiter, M.H.F., 2006. Static lattice energy
calculations of mixing and ordering enthalpy in binary carbonate solid solutions.
Chem. Geol. 225, 304–313. http://dx.doi.org/10.1016/j.chemgeo.2005.08.023.

Vinograd, V.L., Burton, B.P., Gale, J.D., Allan, N.L., Winkler, B., 2007. Activity–composition
relations in the system CaCO3–MgCO3 predicted from static structure energy calcula-
tions and Monte Carlo simulations. Geochim. Cosmochim. Acta 71, 974–983. http://
dx.doi.org/10.1016/j.gca.2006.11.008.

Vinograd, V.L., Sluiter, M.H.F., Winkler, B., 2009. Subsolidus phase relations in the CaCO3–
MgCO3 system predicted from the excess enthalpies of supercell structures with sin-
gle and double defects. Phys. Rev. B 79, 104201. http://dx.doi.org/10.1103/PhysRevB.
79.104201.

Wang, Q., de Leeuw, N.H., 2008. A computer-modelling study of CdCO3-CaCO3 solid solu-
tions. Mineral. Mag. 72, 525–529. http://dx.doi.org/10.1180/minmag.2008.072.1.525.

Wang, Q., Grau-Crespo, R., De Leeuw, N.H., 2011. Mixing thermodynamics of the calcite-
structured (Mn,Ca)CO3 solid solution: a computer simulation study. J. Phys. Chem.
B 115, 13854–13861. http://dx.doi.org/10.1021/jp200378q.

Wang, Y., Liu, Z.T.Y., Khare, S.V., Collins, S.A., Zhang, J., Wang, L., Zhao, Y., 2016. Thermal
equation of state of silicon carbide. Appl. Phys. Lett. 108, 61906. http://dx.doi.org/
10.1063/1.4941797.

Xue, H.T., Tang, F.L., Li, X.K.,Wan, F.C., Lu,W.J., Rui, Z.Y., Feng, Y.D., 2014. Phase equilibrium
of a CuInSe2-CuInS2 pseudobinary system studied by combined first-principles calcu-
lations and cluster expansion Monte Carlo simulations. Mater. Sci. Semicond. Process.
25, 251–257. http://dx.doi.org/10.1016/j.mssp.2013.12.021.

Zhang, J.Z., Reeder, R.J., 1999. Comparative compressibilities of calcite-structure carbon-
ates: Deviations from empirical relations. Am. Mineral. 84, 861–870.

Zunger, A., 1994. First principles statistical mechanics of semiconductor alloys and inter-
metallic compounds. In: Turchi, P.E., Gonis, A. (Eds.), NATO ASI on Statics and Dynam-
ics of Alloy Phase Transformation. Plenum Press, New York, p. 361.

http://dx.doi.org/10.1016/j.chemgeo.2005.08.032
http://dx.doi.org/10.1016/j.chemgeo.2005.08.032
http://dx.doi.org/10.1103/PhysRevB.85.054202
http://dx.doi.org/10.2138/am-1999-7-807
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0310
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0310
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0310
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0310
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0310
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0310
http://dx.doi.org/10.2475/ajs.261.7.683
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0320
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0320
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0320
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0320
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0320
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0325
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0325
http://dx.doi.org/10.1016/0016-7037(79)90085-1
http://dx.doi.org/10.1016/0378-4371(84)90096-7
http://dx.doi.org/10.1016/0378-4371(84)90096-7
http://dx.doi.org/10.1016/0016-7037(66)90072-X
http://dx.doi.org/10.1039/C5CP06891F
http://dx.doi.org/10.1016/J.Calphad.2008.12.005
http://dx.doi.org/10.1007/S11837-013-0764-3
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0360
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0360
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0360
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0365
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0365
http://dx.doi.org/10.1103/Revmodphys.74.11
http://dx.doi.org/10.1103/Revmodphys.74.11
http://dx.doi.org/10.1016/S0364-5916(02)80006-2
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0380
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0380
http://dx.doi.org/10.1016/J.Calphad.2013.06.006
http://dx.doi.org/10.1016/j.chemgeo.2005.08.023
http://dx.doi.org/10.1016/j.gca.2006.11.008
http://dx.doi.org/10.1103/PhysRevB.79.104201
http://dx.doi.org/10.1103/PhysRevB.79.104201
http://dx.doi.org/10.1180/minmag.2008.072.1.525
http://dx.doi.org/10.1021/jp200378q
http://dx.doi.org/10.1063/1.4941797
http://dx.doi.org/10.1016/j.mssp.2013.12.021
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0425
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0425
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0430
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0430
http://refhub.elsevier.com/S0009-2541(16)30493-4/rf0430

	First-�principles phase diagram calculations for the carbonate quasibinary systems CaCO3-�ZnCO3, CdCO3-�ZnCO3, CaCO3-�CdCO3...
	1. Introduction
	2. Computational methods
	3. Results and discussion
	3.1. Cell parameters of the end members and dolomite structures
	3.2. Formation energy landscapes and cluster expansions
	3.3. Phase diagrams
	3.4. Random solid solutions
	3.5. Structural analysis

	4. Conclusion
	Acknowledgements
	Appendix A. Supplementary data
	References


