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ABSTRACT
We explore the entire search space of 32-layer ZnxCd1−xTe superlattices to find the structures that minimize and maximize the bandgap at
each possible zinc concentration. The searching is accomplished through an accurate and efficient combination of valence force field dynam-
ics, the empirical pseudopotential method, and the folded spectrum method. We also describe the use of an alternate preconditioner that
improves the robustness and efficiency of the locally optimal preconditioned conjugate gradient’s solutions to the folded spectrum method.
The physical properties of these superlattices, such as their formation energies, bandgaps, densities of states, effective masses, and optical
response functions, are investigated with density functional theory paired with hybrid functionals and compare well to available experimental
measurements. It is revealed that the bandgap of ZnxCd1−xTe may change by up to 0.2 eV depending on how the layers in the superlattice are
ordered. Stacking order has a large, irregular effect on the effective masses, but optical response functions seem insensitive to it.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0221674

I. INTRODUCTION

Semiconductor alloys are commonly employed for bandgap
tuning.1–6 Variance in composition is the most common method of
tuning in alloys, but commonly used growth techniques (molecular
beam epitaxy7,8 or chemical vapor decomposition,9,10 for example)
also allow selective deposition of specific atomic layers onto a grow-
ing crystal. Since optical properties of a material tend to be sensitive
to the material’s atomic structure, these methods may allow for fur-
ther control of the bandgap, either replacing, or working alongside,
standard composition variance.

The specification of atomic configurations to obtain a target
material characteristic is known as an “inverse design problem.”
Inverse design problems for the optimization of properties such as
the bandgap value and transition type, Curie temperature, piezo-
electric coefficients, and energetic stability have previously been
solved.11–18 The methods of solving these problems depend heav-
ily on the target application and available resources. This article
focuses on the bandgaps of ZnxCd1−xTe layered alloys. This problem
most closely resembles the one solved by Franceschetti and Zunger,
and later Kim et al.,12,15 who used empirical methods to determine
the maximum and minimum bandgap configurations of (Al, Ga)As
superlattices.

This work considers ZnxCd1−xTe for its use in photovoltaic
(PV) applications, although its wide bandgap and tellurium-rich
composition also make it a common choice for use in radia-
tion detection.19–21 For PV, according to the Shockley–Queisser
limit,22,23 CdTe without zinc already has a nearly ideal bandgap
(1.5 eV) for use in single junction cells. With the addition of zinc, the
bandgap increases to over 2.0 eV, making ZnxCd1−xTe appropriate
for tandem PV cells.24–29

Other than the vast amount of experimental work on
ZnxCd1−xTe,24–30 there also exist many theoretical studies on the
material.25,31–38 In all current theory to our knowledge, ZnxCd1−xTe
is modeled as a random alloy, either by the virtual crystal
approximation,25,33 special quasirandom structures,31,36 or consid-
eration of some/all possible combinations of a small simulation
cell.32,34,35 This is perhaps unsurprising, as the virtual crystal approx-
imation in its general formulation represents a maximally random
structure, and modern first-principles calculations even for cells
with a “small” number of atoms can be prohibitively expensive.
The study of ordered structures does not lend itself well to either
method: the virtual crystal approximation is unable to differentiate
between ordered structures, and first-principles techniques require
the use of costly methods to accurately describe optoelectronic
properties.39–46
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In this work, we study the optoelectronic properties of
ZnxCd1−xTe (0 ≤ x ≤ 1) layered alloys ≈ 50 Å in height, correspond-
ing to over 65 000 different models to consider. The cost of using
ab initio methods for computing excited-state properties prohibits
an accurate bandgap screening of these models. To this end, we
first estimate the ground-state atomic positions with a semiempirical
valence force-field model.47 We then use the empirical pseudopo-
tential method (EPM), paired with a fast and accurate solution to
the single-particle Schrödinger equation,48,49 to quickly determine
which structures at a given zinc concentration maximize and mini-
mize the bandgap. Density functional theory (DFT) calculations are
then employed to study the physical properties of these structures.
Combining the EPM and DFT provides high-quality predictions for
only a select few ZnxCd1−xTe structures of interest, which would not
be possible by using either the EPM or DFT alone.

Specifics of the EPM, DFT, and bandgap screening procedures
are given in Sec. II. Our improvements to the convergence of the
EPM, as well as the physical properties of select ZnxCd1−xTe struc-
tures, are detailed in Sec. III. Finally, in Sec. IV, we summarize our
findings.

II. METHODS
For clarity, we now briefly outline the chronological series of

steps taken to reach the results presented in Sec. III. Details of
each step can be found within this section. First, a DFT molecu-
lar dynamics (MD) calculation was performed on Zn0.5Cd0.5Te to
obtain atomic forces. Second, Keating force-field parameters were
obtained from the MD run.47 Third, the potential for the empiri-
cal pseudopotentials was fit to existing bands from the literature.50,51

Fourth, all possible permutations of 32-layer ZnxCd1−xTe were gen-
erated and relaxed with the Keating potential. The folded spectrum
method (FSM)48,49 was combined with the EPM to calculate the
bandgap of each structure. Fifth, the structures with the minimum
and maximum bandgaps, as predicted by step 4, had basic DFT
calculations performed on them at the generalized gradient approx-
imation (GGA) level. Sixth, high quality DFT calculations were
performed on the minimum and maximum bandgap structures at
x = 0.00, 0.25, 0.50, 0.75, 1.00.

A. Density functional theory
We use the Vienna Ab initio Simulation Package (VASP ver-

sion 6.1.052–54) for all DFT calculations. Standard PAW potentials
are used to represent the core electrons;55,56 3d104s2, 4s25s2, and
5s25p4 valence electrons were included for zinc, cadmium, and
tellurium, respectively. For MD, structural relaxations, and effec-
tive masses, we treat exchange–correlation effects with the semi-
local Perdew–Burke–Ernzerhof (PBE) functional.57 All other cal-
culations employ the Heyd–Scuseria–Ernzerhof hybrid functional
with the screening parameter set to 0.2 Å−1 (HSE06)58 for the
exchange–correlation effects.

The MD calculation responsible for the Keating force field
parameters used a plane wave cutoff equivalent to 280 eV, a 5 × 5 × 5
mesh of k-points for integrations, and Gaussian smearing with a
width of 0.04 eV to set partial occupancies. The MD itself ran for
20 ps at 100 K (2 fs time step). We also tested an MD at 300 K, but the

difference between DFT forces and Keating forces was more accept-
able for the MD at 100 K. For structural relaxations of the 32-layer
ZnxCd1−xTe cell, the plane wave basis cutoff energy is increased to
370 eV, a 5 × 5 × 1 mesh of k-points is used, and partial occupan-
cies are set as they were in the MD calculations. The increased cutoff
energy is to ensure that Pulay stress is correctly treated. Both atoms
and the cell shape are adjusted until the force on any given atom is
less than 0.01 eV/Å.

Bandgaps, crystal orbital Hamilton populations (COHPs), den-
sities of states (DOS), and the dielectric response functions are
calculated with HSE06. For these calculations, the plane wave cut-
off energy is set to 280 eV, a 3 × 3 × 1 k-point grid is used, and
tetrahedron smearing with Blöchl corrections59 is employed for par-
tial occupancies. For analysis of the COHPs, we use Local Orbital
Basis Suite Toward Electronic-Structure Reconstruction (LOBSTER
version 4.0.060–65). The basis set for projections is the LOBSTER
default and results in a charge spilling of 1.2% at most. The dielec-
tric functions are calculated according to the independent particle
approximation described by Gajdoš et al.66 and implemented in the
VASP. Specifically, the imaginary portion of the dielectric function
ε2, as a function of energy E, is calculated through

ε2,ij(E) =
4π2e2

Ω
lim
q→0

1
q2∑

v,c,k
wkδ(εc(k) − εv(k) − E)

× ⟨uc,k+ îq∣uv,k⟩⟨uv,k∣uc,k+ ĵq⟩, (1)

where v and c enumerate the valence and conduction bands and the
functions ∣ub,k⟩ are the cell periodic parts of the wavefunctions at
k-point k. The real part of the dielectric function, ε1, is solved using
the Kramers–Kronig principal value integral,

ε1,ij(E) = 1 +
2
π∫

∞

0

xε2,ij(x)
x2
− E2 dx. (2)

The absorption coefficient α and the reflectivity R are calculated as67

α(E) =
2
h̵c

Eκ, (3)

R(E) =
(η − 1)2

+ κ2

(η + 1)2
+ κ2 , (4)

where the complex refractive index η + iκ is defined as

η(E) =
1
√

2
[+ε1 + (ε2

1 + ε
2
2)

1/2
]

1/2
, (5)

κ(E) =
1
√

2
[−ε1 + (ε2

1 + ε
2
2)

1/2
]

1/2
. (6)

The total number of bands calculated was increased to 600 for the
convergence of the optical response functions, and the principle
value integral was solved using a complex shift value of 0.1 eV for
the denominator.

B. Empirical pseudopotential, folded spectrum
methods

We employ the EPM for initial exploration of all possible
ZnxCd1−xTe structures due to its combination of accuracy, effi-
ciency, and non-reliance on self-consistency (necessary for the FSM
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described below). The merits, drawbacks, and theory of the EPM are
described by Cohen and Heine.68 In summary, the single-particle
energies E and wavefunctions ψ of a system are found by solving

Ĥψ = (T̂ + V̂)ψ = Eψ, (7)

where T̂ and V̂ are the kinetic and potential energy operators of
the Hamiltonian Ĥ. Usually, T̂ = h̵2

/(2m0)∇
2 and nonlocality is

included within V̂ . An alternative way of including nonlocality was
suggested by Chelikowsky et al.69 in which T̂ → T̂ ′ by replacing m0

by an adjustable “effective mass”: T̂ ′ = h̵2
/(2m∗)∇2. We will use the

T̂ ′ notation to avoid confusion with effective masses later reported
in this work. Other than simplicity, this method has the important
result that V̂ may remain a purely local function, allowing it to be
written as the sum of atomic pseudopotentials v,

V̂ =
1
N∑j

Sjvj (∣G −G′∣), (8)

where N is the number of atoms, Sj is the structure factor for
species j, and G are reciprocal lattice vectors. Although v is only
sampled at specific values related to the dimensions of the lattice,
it is in theory defined for any point in reciprocal space q. Our
choice of v(q) is detailed in Appendix B. The purely local V̂ allows
the action Ĥψ to be computed as a convolution instead of a full
matrix multiplication,70,71 which is necessary for the efficiency of the
method.

We also use the FSM,48,49 which allows the calculation of elec-
tronic states arbitrarily deep within Ĥ without the need to solve for
lower energy states. It works by “folding” the (eigenvalue) spectrum
of Ĥ about a reference energy Eref, transforming the single particle
Schrödinger equation into

(Ĥ − Eref)
2ψ = (E − Eref)

2ψ = E′ψ. (9)

The eigenvalues of (Ĥ − Eref)
2, E′, are related to the eigenvalues of

interest, E, by E′ = (E − Eref)
2. The benefit of the FSM is that solving

for the lowest few E′ (an easy job for iterative eigensolvers) yields
the few E closest to Eref (a difficult job for iterative eigensolvers).
By choosing Eref correctly, the FSM can report the bandgap by con-
verging only two electronic bands, independent of the size of the
structure.

An alternative to the FSM would be to solve for all the valence
bands plus one conduction band for each structure to get the
bandgap energies. In the present case of 32-layer ZnxCd1−xTe, this
would involve converging 100 and 29 bands per k-point instead of
two. The former method is about 20 times slower than the latter in
our implementation—see Sec. III A for further discussion.

C. Bandgap screening of ZnxCd1−xTe
Both the Keating force field and EPM parameters are fit using

particle swarm optimization (PSO), a global optimization algo-
rithm.72 The PSO involves hyperparameters for particle inertia,
individual particle strength, and global particle strength. We choose
0.5, 1.0, and 1.0 for each of these hyperparameters, respectively.

For the Keating potential, we compare the atomic forces from
1000 equispaced configurations (out of 10 000 total) from a DFT MD

run on Zn0.5Cd0.5Te to the atomic forces from the Keating potential
applied to the same configurations. PSO is used to adjust αijs and βijs
in order to minimize the average error between the atomic forces
from DFT and the atomic forces from the Keating potential. The
optimized Keating potential parameters are given in Tables SI and
SII of the supplementary material. The predicted bond lengths for
ZnTe (2.65 Å) and CdTe (2.80 Å) compare well with experiment73,74

and previous bond order potential parameterizations.37,38 Atomic
movements in the present superlattices are expected to be con-
strained in such a way that the Keating model gives a sufficient
description of the forces. This is supported by DFT calculations on
the structures that minimize and maximize the bandgap: starting
from initial crystallographic atomic positions, atoms were only 0.2
Å away from their minimum energy positions on average. For stud-
ies involving defects, surfaces, alloys, and other more complicated
geometries, more sophisticated force field models37,38 should be used
instead.

For the EPM parameters, we compare the band energies at a few
special k-points [L = (1/2, 1/2, 1/2), Γ = (0, 0, 0), X = (0, 1/2, 1/2),
U = (1/4, 5/8, 5/8), and K = (3/8, 3/8, 3/4)] between the reference
data50,51 and the energies as calculated by the EPM. PSO is used to
adjust the EPM parameters until a weighted average error between
reference bands and EPM bands is minimized. As we are only inter-
ested in an accurate description of the bandgap, the weights are such
that a few bands closest to the valence band maximum (VBM) and
conduction band minimum (CBM) are more important than any
other bands. The initial guesses for the EPM parameters were found
by existing fits to zinc, cadmium, and tellurium from Cohen and
Heine68 before being adjusted by the PSO. To treat charge transfer,
we fit two separate tellurium potentials: one for tellurium in ZnTe
(notated vTe[ZnTe]) and the other for tellurium in CdTe (notated
vTe[CdTe]). The actual tellurium potential used in the EPM depends
on its immediate local environment. Te has four nearest neighbors,
of which NZn are zinc and NCd are cadmium. The atomic potential
given to tellurium in the EPM is

vTe =
NZn

4
vTe[ZnTe] +

NCd

4
vTe[CdTe]. (10)

This same method was previously used by Mäder and Zunger and
Kim et al. for (Al, Ga)As.15,75 The optimized EPM parameters are
given in Table I, and a plot of the atomic pseudopotentials is shown
in Fig. 1.

With the Keating potential and EPM parameter fit, we pre-
dict the bandgap of each possible structure for 0 ≤ x ≤ 1 in steps of
1/16. There are 216 possible structures for our 32-layer ZnxCd1−xTe
material since half of the layers are tellurium, which is never
swapped for a different element. For each structure, we first relax
the atoms using the Keating force field model and quenched Ver-
let integration.76 The relaxation is performed until the force on any
atom is less than 0.05 eV/Å. After relaxation, the FSM is applied
with a basis set cutoff energy equivalent to 110 eV (over three times
the maximum Fermi momentum of zinc, cadmium, or tellurium, as
suggested by Cohen and Heine68) on a 3 × 3 × 1 k-point mesh. The
FSM is converged to 0.1 meV, meaning that the VBM and CBM are
converged to 0.01 eV.

In principle, one could determine the bandgap by carefully
choosing Eref to be in the middle of the gap and solving for two
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TABLE I. EPM parameters used in this study. Te[ZnTe] is the result of fitting tellurium to the ZnTe reference data from Bernard and Zunger.50 Te[CdTe] is the result of fitting
tellurium to the CdTe reference data from Chelikowsky and Cohen.51 The actual potential used for tellurium is given by Eq. (10). The window length l and cutoff function Θ are
defined in Appendix B and are identical for all elements: l = 0.2 Å−1, r = 1.5, and f = 0.75.

Element T′ (eVÅ 2) v0 (eV) vm (eV) q0 (Å
−1
) qm (Å

−1
) qc (Å

−1
) s (Å) n

Zn 4.627 460 −6.306 401 1.750 276 2.650 095 3.447 664 4.86 0.299 923 0.956 664
Te[ZnTe] 4.627 460 −7.669 856 0.563 728 2.811 029 3.753 352 5.37 0.211 335 0.850 656
Cd 4.526 188 −4.994 802 1.550 105 2.449 964 3.338 316 4.34 0.049 941 1.041 400
Te[CdTe] 4.526 188 −7.702 521 0.263 247 2.944 099 3.783 317 5.37 0.062 864 1.057 374

FIG. 1. Plots of the empirical pseudopotentials used in this work. Also included
are the effective cutoff energies at each q point, defined through E = h2/(2m)q2.
Te[ZnTe] is the result of fitting tellurium to the ZnTe reference data from Bernard
and Zunger.50 Te[CdTe] is the result of fitting tellurium to the CdTe reference data
from Chelikowsky and Cohen.51 The actual potential used for tellurium is given by
Eq. (10).

bands. In practice, we have chosen to keep track of two reference
energies—one for the valence bands (Eref,vb) and the other for the
conduction bands (Eref,cb)—and using each to solve for a single band
energy. Although the former is more efficient, it has the possibility
of converging, say, two valence bands instead of one valence band
and one conduction band. The latter method is easier to automate
so long as the band edges are not heavily affected by atomic layer
swaps.

The reference energies are initialized with a non-FSM calcula-
tion of a small ZnxCd1−xTe cell (for example, ZnTe, representable
with only two atoms). They are then iteratively updated before each
new FSM calculation. Specifically, Eref at step j + 1 is calculated from
the VBM and CBM of step j according to

E j+1
ref,vb = VBMj

+
1
4
(CBMj

−VBMj
), (11)

E j+1
ref,cb = CBMj

−
1
4
(CBMj

−VBMj
). (12)

By arranging the atomic layer swaps such that configuration j + 1
is similar to configuration j, this method ensures that the refer-
ence energies always remain close to their respective band edges.
We occasionally did a non-FSM calculation to verify that the Eref
estimates were still correct.

III. DISCUSSION AND RESULTS
A. Convergence behavior of the folded spectrum
method

We first discuss the convergence of the FSM, shown in Fig. 2,
which shows the behavior of two different preconditioners in con-
verging to the VBM and CBM of a CdTe cell of increasing size.
Each data point is the average of five independent runs. The solution
to Eq. (9) is solved via the Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) method;78,79 thus, all further dis-
cussion technically only pertains to it. Preconditioner a refers to
that first described by Teter et al.77 and takes the form Ka

GG′ = δGG′

(27 + 18x + 12x2
+ 8x3

)/(27 + 18x + 12x2
+ 8x3

+ 16x4
)with K rep-

resenting the preconditioner, G representing a reciprocal lattice vec-
tor, and x being the ratio of the kinetic energy at some G to the sum
of the kinetic energies. For the FSM, the kinetic energy in precondi-
tioner a must be scaled by Eref—see Sec. SI of the supplementary
material. Preconditioner b is that given by Wang et al. and Can-
ning et al.,48,49 designed for the FSM. It is (in standard units)
Kb

GG′ = δGG′ T2
avg/((h̵2

/(2m)∣G∣2 + Vavg − Eref)
2
+ T2

avg), with Vavg
being the average potential and Tavg being the average kinetic
energies.

In general, from Fig. 2(a), the number of steps required to con-
verge the FSM are on the order of 100, significantly higher than the
number of steps needed in the convergence of Hamiltonians with-
out the use of the FSM, which is generally of order 10. This result is
due to the fact that squaring the Hamiltonian increases its condition
number by an order of magnitude, and the steps to converge conju-
gate gradient methods scale with the condition number.80 This result
was reported by Wang and Zunger,48 who also note that the speed at
which each FSM step can be completed more than makes up for the
increase in the total number of FSM steps compared to solving the
usual single particle Schrödinger equation.

Figure 2(a) also shows that the VBM requires more steps to
converge than the CBM does. This is due to the fact that CdTe’s
topmost valence bands are triply degenerate at the Γ point when elec-
tron spin is not taken into account. Degenerate eigenvalues can slow
the convergence of iterative eigensolvers, LOBPCG being one such
example.78,79 Meanwhile, the CBM has no such degeneracy.
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FIG. 2. Behavior of two preconditioners (prec.) for finding the band edges of differ-
ently sized CdTe cells using the FSM. Results are the average of five independent
runs. Prec. a77 (solid lines) performs better than prec. b48,49 (dashed lines), for
both the valence (circles) and conduction (crosses) bands, although prec. b was
designed for use with the FSM. In (a), the steps to convergence for prec. b are only
plotted up to 3931 plane waves since prec. b converges to the incorrect results
after this point, as is shown in (b).

The most surprising feature of Fig. 2 is the fact that precondi-
tioner a outperforms preconditioner b (simply referred to as a and
b for the remainder of this section) in terms of both steps to conver-
gence and overall ability to converge to the correct band energies.
In Fig. 2(a), b’s steps to convergence are only given up to 54 atoms
(3931 plane waves) since after that point, b fails to consistently yield
the correct VBM and CBM, as shown in Fig. 2(b). Even so, it is clear
that b tends to converge slower than a—for a 16 atom supercell, b
converges to the VBM and CBM in 393 and 302 steps, on average,
respectively. a does the same in 97 and 77 steps. The more impor-
tant issue is that b does not cause LOBPCG + FSM to give the correct
bandgap for supercells greater than 54 atoms large and is thus unreli-
able for our needs in this work. b predicts the VBM to be between 2.4
and 14.5 eV and the CBM to be between 2.2 and 15.9 eV. a predicts
the VBM and CBM consistently as 6.7 and 8.2 eV, respectively.

The failure of b is likely due to the small subspace associated
with LOBPCG when only solving for one eigenvalue (size 3). To
our knowledge, LOBPCG has only been paired with the FSM once
before, in a study of CdSe nanoparticles by Tomo et al.81 This study
tested the FSM with both b and no preconditioner for problems of up
to 1061 atoms (141 625 plane waves), but reported LOBPCG + FSM
to yield consistent band energies. They, however, were solving for
ten band energies at once, with a subspace size of at least 30. When
we increase the block size, we also see more consistent band energies
with b, although this significantly increases the cost of finding the
VBM and CBM. Other attempts to alter the LOBPCG routine (more
aggressive orthonormalization, adjustment of Tavg as suggested by
Wang and Zunger48) were ineffective. The increased subspace size
seems to remedy b’s inability to give correct band energies, but it
does not meaningfully improve its rate of convergence compared to

a. For example, a finds the ten bands nearest to the VBM and CBM
about ten times faster than b does for a 250 atom CdTe supercell.

B. Bandgap screening
The main results of the EPM exploration of 32-layer

ZnxCd1−xTe are presented in Fig. 3(a) and Table II. Figure 3(a)
shows the minima, maxima, and average bandgaps (BGs) of all pos-
sible 32-layer ZnxCd1−xTe models as predicted by the EPM. The
orange shaded region indicates the full range of BGs, and the black
bars at each x are violin plots indicating the distribution of BGs (the
width of the violin plot correlates with the density of points). The
“configuration” column of Table II gives the arrangement of zinc
and cadmium atoms corresponding to the minimum and maximum
BG configurations. We performed DFT (GGA) calculations on each
of the minimum and maximum gap configurations, of which the
BGs are shown in Fig. 3(b). We have no information on the GGA BG
distribution of all 216 structures, as obtaining this information would
be too costly—we would not need the EPM otherwise. The lattice
constant and formation energy columns of Table II also correspond
to these DFT calculations.

From Fig. 3(a), the EPM predicts the BGs of the end mem-
bers CdTe and ZnTe to be 1.5 and 2.0 eV, respectively, in excellent
agreement with experimental data.25–28 This agreement is not sur-
prising, however, as the EPM was fit to experimental data. For the
layered superlattices, their BGs are reported to vary by about 0.2 eV
at most, with the most variance for x ≈ 0.5. Figure 3(b) exhibits
the well-known “bandgap problem,”44 where the DFT GGA results
underestimate the BG by about 0.9 eV. A constant shift of the con-
duction bands by 0.9 eV would alter the GGA estimations of BG

FIG. 3. (a) Bandgaps for each possible 32-layer ZnxCd1−xTe supercell (65 536
total possibilities) predicted by the EPM. The range of all possible bandgaps is
represented by the orange shaded area, and the minima, maxima, and aver-
age bandgaps are shown directly. The distribution of the remaining bandgaps is
indicated by the widths of the black marks at each x (wider = higher density of
configurations with a given bandgap). (b) Similar to (a), but only the minimum
and maximum bandgaps (as estimated by the EPM) are calculated with GGA. No
information on the distribution of all 65 536 GGA gaps is available.
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TABLE II. Summary of 30 DFT GGA calculations on the minimum and maximum bandgap configurations of ZnxCd1−xTe. For each x, the 16-cation-layer configuration yielding
the minimum and maximum bandgaps is given along with the calculated lattice constants a and formation energies Ef. Configurations are interpreted as layers stacked in the c
direction of the crystal, where “Z” and “C” indicate the layers of zinc and cadmium atoms, respectively. Te layers are not indicated, as they are the same for all layers.

x

Minimum gap Maximum gap

Configuration a (Å) Ef (meV/f.u.) Configuration a (Å) Ef (meV/f.u.)

0.0000 CCCCCCCCCCCCCCCC 6.61 −923 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.0625 ZCCCCCCCCCCCCCCC 6.61 −920 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.1250 ZZCCCCCCCCCCCCCC 6.59 −915 CCZCCCCCCCCCZCCC 6.57 −916
0.1875 ZCZZCCCCCCCCCCCC 6.57 −912 CCCCCCZCCCCCCCZZ 6.54 −913
0.2500 ZZZZCCCCCCCCCCCC 6.55 −908 ZCCCCZCCCCZZCCCC 6.51 −909
0.3125 ZCZZZZCCCCCCCCCC 6.52 −906 CCCZCCZCCZCZCCCZ 6.47 −908
0.3750 ZZZZZCZCCCCCCCCC 6.50 −905 ZCZCCCZZCCCZZCCC 6.45 −907
0.4375 ZZZZZZZCCCCCCCCC 6.47 −905 ZCZCZCCZCCZCCZZC 6.42 −907
0.5000 ZZZZZZZZCCCCCCCC 6.44 −906 ZCZZZCZCCZCZCCCZ 6.39 −907
0.5625 ZZZZZZZZZCCCCCCC 6.41 −908 CCZZZCCZZZCCZZCZ 6.36 −909
0.6250 ZZZZZZZZZZCCCCCC 6.38 −910 CZZCCZCZZZZCCZZZ 6.33 −911
0.6875 ZZZZZZZZZZZCCCCC 6.34 −913 ZCZZZZCCZZZCCZZZ 6.31 −914
0.7500 ZZZZZZZZZZZZCCCC 6.31 −917 ZZCCZZZZCZCZZZZZ 6.29 −918
0.8125 ZZZZZZZZZZZZZCCC 6.29 −921 ZZCZZZZZZCZZZCZZ 6.26 −921
0.8750 ZZZZZZZZZZZZZCZC 6.27 −925 ZZZZZCZZZZZZZZZC 6.24 −927
0.9375 ZZZZZZZZZZZZZZZC 6.22 −932 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1.0000 ZZZZZZZZZZZZZZZZ 6.19 −938 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

TABLE III. Summary of eight DFT calculations on the minimum and maximum
bandgap configurations of ZnxCd1−xTe. For each x, the bandgaps (BGs) and hole
masses in both the [100] and [001] directions m∗h are given. Electron effective masses
in both directions are constant: m∗e,100 = m∗e,001 = 0.1. Effective masses are reported
relative to the electron resting mass. HSE06 was used for the calculation of the
bandgaps, and GGA was used for effective masses.

x

Minimum gap Maximum gap

BG (eV) m∗h,100 m∗h,001 BG (eV) m∗h,100 m∗h,001

0.00 1.36 0.6 0.6 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.25 1.36 0.6 0.8 1.44 0.6 0.6
0.50 1.44 1.0 1.6 1.57 0.3 0.6
0.75 1.61 0.6 2.1 1.72 0.5 0.6
1.00 1.94 0.5 0.5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

in CdTe and ZnTe to 1.5 and 2.0 eV, respectively—identical to the
EPM values. This constant shift would not, however, change the dis-
crepancy between the EPM and DFT’s predictions of the difference
in BG values between the minimum and maximum BG structures:
GGA’s maximum variance is about 0.1 eV, although it still occurs
at x ≈ 0.5. The HSE06 pseudopotential does not change this result
(see Table III), but it does cause the gaps of ZnTe and CdTe to
match both experimental values and our EPM values. This discrep-
ancy is due to the treatment of tellurium charge transfer described
in Sec. II C, Eq. (10). If the best fit tellurium EPM potentials were
more similar to one another, the EPM-predicted differences in gaps
between the minimum and maximum BG structures would be more
similar to the DFT results.

Both the EPM and DFT predict a nonlinear relationship
between the BG and zinc concentration. This nonlinearity is well-
known to occur in ZnxCd1−xTe and is described by the bowing
parameter B in the equation Eg,(Zn,Cd)Te = xEg,ZnTe + (1 − x)Eg,CdTe

− x(1 − x)B.25–27 For the EPM, B is calculated to be 1.3, 1.0, and
0.6 eV for the minimum, average, and maximum BG structures,
respectively. DFT GGA (HSE06) predicts B as 0.7 and 0.3 eV (0.9
and 0.3 eV) for the minimum and maximum BG structures. Rea-
sons for differences between the EPM and DFT include the fact that
the EPM potential was fit to experimental material data instead of
atomic data and the fact that charge transfer in the EPM is simu-
lated by the method described in Sec. II C. Zelaya-Angel et al.25 have
compiled a comprehensive table of experimental bowing parameters
for ZnxCd1−xTe. From it, the measured values of B range from 0.0
to 0.9 eV. Other theoretical calculations of B in ZnxCd1−xTe ran-
dom alloys include predictions from empirical tight binding and
DFT with various functionals, yielding values of B ranging from
0.2 to 1.6 eV.31–33,35,36 Overall, both our EPM and DFT predictions
of B for the maximum BG structures fall within the experimental
range of B as well as most theoretical predictions, despite the fact
that our results are exclusively for layered ZnxCd1−xTe superlattices.
The same is not true for the minimum BG structures, where our
predicted B is generally higher than average. This is because the
maximum BG structures are more similar to random alloys than the
minimum BG structures are—see Table II.

Table II summarizes the results of DFT GGA calculations on
the minimum and maximum BG cells found through the EPM
search. It gives the layering orders of zinc and cadmium as well
as lattice constants and formation energies for each structure.
Figure 4 shows three example maximum BG structures, which corre-
spond to the table entries for x = 0.25, 0.50, 0.75. The minimum BG
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FIG. 4. Some predicted maximum-bandgap layering configurations of ZnxCd1−xTe.

configurations are almost all bulk ZnTe and bulk CdTe, minimiz-
ing the number of ZnTe and CdTe interfaces as much as possible
given stoichiometry and periodic boundary conditions. Technical
exceptions are for x = 0.1875, 0.3125, 0.3750, and 0.8750, of which
each has the second smallest number of ZnTe/CdTe interfaces pos-
sible. The BG differences between these structures and the ones that
minimize the number of interfaces are 1.4, 0.9, 0.5, and 7.8 meV
for x = 0.1875, 0.3125, 0.3750, and 0.8750, respectively. Given that all
these differences are smaller than the tolerances that we set for the
solutions to the FSM (10 meV), it seems reasonable to conclude that
these are numerical errors, and the structures that truly minimize
BG are those that minimize the number of ZnTe/CdTe interfaces.
While one could predict the structures that minimized BG without
the FSM, the structures that maximize BG are non-obvious. They
do not maximize the number of ZnTe/CdTe interfaces, but instead
have small clusters of ZnTe and CdTe somewhat-evenly distributed
throughout the supercell.

The lattice constants in general decrease as x increases linearly,
in agreement with available experiment26–28 and theory.31,33,35 In
addition, the lattice constants of ZnTe (6.2 Å) and CdTe (6.6 Å)
are about 2% larger than the experimental values, which is expected
for DFT calculations. Comparing the minimum and maximum BG
structures for a given x, the structures that minimize the gap tend
to have larger lattice constants than those that maximize the gap.
These differences in lattice constant are not constant, ranging from
0.02 to 0.05 Å, with the larger differences tending to be closer to
x = 0.5. While zinc concentration is the major contributor to the lat-
tice constant, it is clear that the layer orderings have some effect as
well.

The formation energies of ZnxCd1−xTe superlattices are all neg-
ative, equal to about −1 eV per formula unit (f.u.), indicating that
these structures should be able to be synthesized. The energies tend
to grow larger as x approaches 0.5: about a 30 and 15 meV/f.u.

increase from ZnTe and CdTe, respectively. At any given x, the max-
imum BG configuration is lower in energy than the minimum BG
configuration by 1 to 2 meV/f.u. There is no trend in these energy
differences.

C. Crystal orbital Hamilton populations
Results of the COHP analysis on the minimum and maximum

BG models, computed with DFT-HSE06, for a few zinc concen-
trations are shown in Fig. 5. We plot the first-nearest-neighbor
contributions to the negative partial COHP (−pCOHP) (Zn–Te and
Cd–Te pairs) so that bonding contributions are shown as posi-
tive in Fig. 5. Only compounds including both zinc and cadmium
are shown here; see the supplementary material (Fig. S2) for the
–pCOHP of ZnTe and CdTe. The insets of Fig. 5 show the energy
regions near the VBMs and CBMs.

Overall, states near the Fermi level have little/no antibonding
contributions, being outweighed by the large bonding contributions
lower in energy, confirming that Zn–Te and Cd–Te bonds are both
stable. As a function of x, the amount of Zn–Te population increases
as the concentration of Zn increases. In addition, as [Zn] climbs, the
integral of the COHP up to the VBM becomes more negative: from
an average of −1.37 at x = 0.25 to −1.41 at x = 0.50 and finally −1.45
at x = 0.75. This signifies that ZnxCd1−xTe is predicted to become
slightly more stable with increasing [Zn].

Concerning similarities and differences between minimum and
maximum BG structures, the valence bands near the Fermi level
are almost indistinguishable from one another. Valence bands lower
in energy show differences, but no visible systematic trends. The
superlattices that maximize the gap do, however, have slightly more
negative bonding population values, quantified by the integrals of
the COHP up to the VBMs: for x = 0.25, these values are −1.35 and
−1.38 for the minimum and maximum BG structures, respectively.

FIG. 5. Negative pCOHP plots for minimum [(a), (c), and (e)] and maximum
[(b), (d), and (f)] bandgap ZnxCd1−xTe configurations, split into contributions from
Zn–Te (red solid lines) and Cd–Te (blue dashed lines), calculated with HSE06. The
–pCOHP is plotted so that bonding contributions are positive on the graphs.
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Similarly, for x = 0.50 and x = 0.75, the integrals of the COHPs are
−1.39 (−1.42) and −1.44 (−1.45) for the minimum BG lattice (max-
imum BG lattice). This fact is in agreement with the formation
energies of Table II, where structures that maximize the gap are
slightly lower in energy than those that minimize the gap.

In all cases, the contributions to the COHP from Zn–Te pairs
are slightly higher (+0.2%) for the maximum BG structures than
they are for the minimum gap structures. Conversely, the Cd–Te
pair contributions to the COHP are slightly lower (−0.2%) for
the maximum bandgap structures compared to the structures that
minimize the gap. Most tellurium atoms in the minimum BG con-
figurations are completely surrounded by either zinc or cadmium,
while tellurium in the maximum gap structures may be coordinated
by all zinc, all cadmium, or a mix of the two. This implies that Zn–Te
bonds in the mixed Zn/Cd regions of ZnxCd1−xTe superlattices are
stronger than Zn–Te bonds in the phase-separated ZnTe regions of
the superlattice. The opposite is true for Cd–Te bonds. Possibly, the
increase in bonding strength of zinc bonds outweighs the decrease
in bonding strength of cadmium bonds, which explains why the
structures that maximize the bandgap have lower formation ener-
gies. As will be explained in Sec. III D, this effect can be explained
by the effect of local atomic environment on the density of states of
tellurium atoms.

There are also differences in the conduction band populations,
most noticeable for x = 0.50, 0.75. These differences seem to arise
more from the density of states itself, discussed in Sec. III D, than
the overlap between bonding energies and the density of states.

D. Densities of states
Figure 6 shows the orbital-decomposed DOS of the minimum

and maximum BG configurations for some zinc concentrations as
computed by DFT-HSE06. The s, p, and d states of zinc, cadmium,
and tellurium are all indicated since each has a significant contri-
bution, other than the d states of tellurium. Note that the x-axis is
broken at the VBM in order to more clearly show the conduction
band states. Only compounds including both zinc and cadmium are
shown in Fig. 6; see Fig. S3 of the supplementary material for the
DOS of ZnTe and CdTe.

In general, the valence bands are dominated by the p states
of tellurium. The p and d states of zinc and/or cadmium are the
only other major contributors to the valence band DOS, depending
on stoichiometry. The conduction band DOS is comprised of the s
states of zinc and/or cadmium as well as the s states of tellurium.
The relative contributions to the DOS are in agreement with previ-
ous theoretical work on ZnxCd1−xTe.31 Compared to the conduction
bands, the valence bands have a sharper onset at the VBM, indicating
that they are flatter than the conduction bands. This is in agreement
with the effective masses listed in Table III, where the hole masses
are 3 to 10 times heavier than the electron masses.

We have also investigated how the local environment of tel-
lurium affects its contributions to the DOS in Fig. 7 (again, com-
puted within DFT-HSE06). Figures 7(a) and 7(b) show the valence
and conduction band edges, respectively. Only the s and p states are
shown, as the d states of tellurium are noncontributing within the
energy range of interest. The differing colors represent tellurium in
different local environments: red and blue for tellurium surrounded

FIG. 6. DOS plots for minimum [(a), (c), and (e)] and maximum [(b), (d), and (f)]
bandgap ZnxCd1−xTe configurations calculated with HSE06. The DOS is split into
contributions from zinc (red), cadmium (blue), and tellurium (green) atoms as well
as their s (solid), p (dashed), and d (dotted) states. Note that the energy axes are
broken after the valence band maxima to more clearly show band edge states.

completely by zinc and cadmium, respectively. Green represents tel-
lurium surrounded by half zinc and half cadmium. Here, tellurium
is treated as three separate species in the same way as was done for
the EPM, and the DOS is normalized by the count of each “unique”
species. Also note the differences in scale: the valence band DOS is
around six times larger than the conduction band DOS.

The differences in the DOS depending on local environment
exemplify our reasoning for using three different tellurium poten-
tials: the s and p states of tellurium are sensitive to what atoms it is
bonded to. Regarding valence bands in Fig. 7(a), as the number of
cadmium neighbors increases, the p states of tellurium contribute
more to the DOS. From Fig. 7(b), it can be seen that the conduc-
tion band s states of tellurium are also directly correlated with the
increase in cadmium nearest neighbors. Interestingly, in the con-
duction band, the p state DOS of tellurium is the same regardless
of whether tellurium is surrounded completely by zinc or cadmium.
If tellurium has two bonds with zinc and two bonds with cadmium,
however, its p states are more numerous. This effect is too small to
be resolvable in Fig. 6.

The effect of atomic ordering on the valence band edges of the
DOS can be explained through Fig. 7. Since tellurium p states make
up most of the valence band edge, it is easiest to see the following
effects through the total DOS, shown in Fig. S4. In the following,
we will denote a tellurium surrounded by NZn zinc atoms and NCd
cadmium atoms as Te[NZnZn, NCdCd].

At any given value of x, the configuration that minimizes the
gap has a smaller number of Te[2Zn, 2Cd] than the max BG struc-
ture does. For low zinc concentrations (x ≤ 0.25), the number of
Te[4Zn, 0Cd] is negligible for both the structures that minimize and
maximize the bandgap. So, the transition from the structure with
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FIG. 7. Dependence of local environment on the DOS of tellurium atoms in
ZnxCd1−xTe calculated with HSE06. The s (solid lines) and p (dashed lines) states
of tellurium in all three possible local environments (four, two, and zero zinc bonds
as red, green, and blue lines, respectively) are averaged over the minimum and
maximum bandgap configurations for x = 0.25, 0.50, 0.75. Only states near (a) the
valence band edge and (b) the conduction band edge are shown.

the minimum gap to the structure with the maximum gap only
exchanges Te[0Zn, 4Cd] for Te[2Zn, 2Cd]. The former contribute
more to the valence band edge DOS than the latter. Therefore, the
valence band edge is larger for the minimum gap configurations
compared to the maximum gap configurations. By a similar argu-
ment, high zinc concentrations (x ≥ 0.75) exhibit a valence band
DOS, which is larger for configurations that maximize the gap com-
pared to the minimal BG structures since Te[2Zn, 2Cd] has a larger
DOS profile than Te[4Zn, 0Cd]. Finally, for intermediate zinc con-
centrations (0.25 ≤ x ≤ 0.75), the valence band edge DOS is roughly
the same between the minimum and maximum BG structures. This
is because the DOS contribution of Te[2Zn, 2Cd] is about equal
to the average of Te[0Zn, 4Cd] and Te[4Zn, 0Cd], and about an
equal number of Te[0Zn, 4Cd] and Te[4Zn, 0Cd] are exchanged
for Te[2Zn, 2Cd] when transitioning from the minimum to the
maximum gap configurations.

The previous discussion about the valence band edge also
applies to tellurium’s s-state contribution to the conduction band
edge, although this is complicated by the fact that both zinc and
cadmium’s s states participate non-negligibly to the conduction
band DOS as well. Zinc contributes more states to the band edge
DOS in the maximum BG structures than in those that minimize the
gap. The cadmium atoms contribute less states in the maximum BG
structures than in the minimum BG structures.

E. Effective masses
In Table III are the values of the effective electron and hole

masses calculated parallel ([100] direction, a or b in Fig. 4) and per-
pendicular ([001] direction, c in Fig. 4) to the stacked layers in our

ZnxCd1−xTe superlattices. These values are computed with DFT-
GGA using the standard quadratic approximation to the energy
dispersion relationships. All effective mass values in Table III and
in this section are reported as fractions of the electron resting mass.

The effective masses of electrons, m∗e , are 0.1 for both ZnTe and
CdTe. Holes, m∗h , are calculated to be heavier, 0.5 for ZnTe and 0.6
for CdTe. Our results for m∗e are in excellent agreement with exper-
imental results for both ZnTe, equal to 0.1 and 0.2,82,83 and CdTe,
equal to 0.1.84,85 Theoretical calculations of m∗e in ZnTe include 0.1
and 1.3: the former along [100] and the latter an average over high-
symmetry paths.31,86 The comparison of m∗h is complicated by the
degeneracy of ZnxCd1−xTe at the Γ point. m∗h measurements give
0.2 for ZnTe and 0.4–0.6 for CdTe.14,84,85 Our calculations of m∗h in
ZnTe differ from experimental results by 0.3, while our value for
CdTe is within the range of experimental measurements. Further-
more, our calculations agree with the trend that m∗h is heavier in
CdTe than in ZnTe. Paiva et al. calculated light and heavy holes in
ZnTe to be 0.1 and 0.4, respectively, and Dumre et al. found an aver-
age of 1.2.31,86 These same values for CdTe are 0.1, 0.5, and 1.3. Our
calculated m∗h are very similar to the heavy hole calculations of Pavia
et al., but differ significantly from those of Dumre et al.

As both a function of zinc concentration and differences in
atomic configurations between the minimum and maximum BG
structures, our calculated m∗e is constant, equal to 0.1. This indicates
that the shape of the conduction bands is insensitive to x and pos-
sibly to changes in atomic structure as well. The behavior of m∗h is
more complicated, not seeming to follow any consistent trend. For
example, m∗h in the [100] direction for the minimum BG configura-
tions is heaviest at x = 0.5, but the same mass vs x relationship for
the maximum BG configurations is at its minimum for x = 0.5. In
addition, m∗h in the [001] direction has a high variance with x for
the structures that minimize BG, but no variance for the structures
that maximize BG. At any given zinc concentration, the relation-
ship between minimum BG structures and maximum BG structures
is unpredictable—a result of the seemingly unpredictable layering
configurations of the maximum BG structures.

F. Absorption and reflectivity spectra
Figure 8 shows both the absorption and reflectivity spectra of

minimum and maximum BG ZnxCd1−xTe superlattices over the
energy range of interest for PV applications, computed with DFT-
HSE06. The spectra are both calculated from the average of the
diagonals of the dielectric response matrix. In addition, the AM 1.5G
solar spectra are shown in the backgrounds.87,88 Only compounds
including both zinc and cadmium are shown in Fig. 8; see Fig. S5
of the supplementary material for the absorption and reflectivity
spectra of ZnTe and CdTe.

In general, the absorption coefficient α is found to be between
104 and 105 cm−1 until hω ≈ 3.5 eV, at which point it rapidly
increases. The reflectivities R range from 20% to 35% within the
energy range of interest. These values are in good agreement with
experimental measurements of Sato and Adachi,89 who obtained α
for ZnTe to be 1.2 × 104 and 1.2 × 105 cm−1 at hω = 2.3 and 3.5 eV,
respectively, as well as R = 23% and 40% at hω = 1.5 and 3.5 eV,
respectively. Rangel-Cárdenas and Sobral90 measured α in CdTe as
2.3 × 104 cm−1 and 2.9 × 104 cm−1 and R as 23% and 30%. Both
of these values are for hω = 1.6 and 3.1 eV and compare well with
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FIG. 8. (a) and (b) Absorption coefficient α and (c) and (d) reflectivity spectra for
minimum [(a) and (c)] and maximum [(b) and (d)] bandgap ZnxCd1−xTe configura-
tions calculated with HSE06. The response functions for x = 0.25, 0.50, 0.75 (red
solid, green dotted-dashed, and blue dashed lines, respectively) correspond to the
left-hand axes. They overlay the AM 1.5G solar spectra, shown in gray, of which
the scales are on the right-hand axes.

our calculations for both alloys and their end members. Dumre
et al.31 provide both α and R as a function of x in ZnxCd1−xTe ran-
dom alloys, calculated with DFT-HSE06. Their calculated values also
match our results.

Changes in the response functions with x are regular, with the
major features of α and R shifting to higher energies as zinc con-
centration increases due to the increasing bandgap. In addition, as x
increases, the minima of α and R increase, while their maxima tend
to decrease. Dumre et al.31 report less regular changes in the optical
characteristics as a function of x. This discrepancy can be explained
by the significant differences in simulation cells between the present
study (layered superlattices) and theirs (random alloys).

Both α and R are, overall, very similar when comparing the
minimum and maximum BG structures. They exhibit blueshifting
of major features due to changes in bandgap, though to a lesser
extent than the shifting discussed in the previous paragraph. There
are otherwise many small differences (unlikely to be perceivable
in an experimental setting), but no noticeable trends. For exam-
ple, at x = 0.25, 0.50, the first peak of the minimum BG α spectra is
shorter and wider than the corresponding peak for the maximum BG
structure’s α. The opposite is true of the second peak of the x = 0.75
structures. Comparison between the R spectra of different atomic
configurations is less obvious than the α response. The most notable
feature would be the difference in shape and magnitude of R for the
x = 0.75 set of configurations near hω = 2.6 eV.

IV. CONCLUSION
In this work, we employed a valence force field model paired

with the EPM + FSM to efficiently explore the large search space

of ZnxCd1−xTe 32-layer superlattices and determine the structures
that minimize and maximize BG at each possible value of x. In
doing so, we identified convergence issues present when pairing
the LOBPCG method with the usual FSM preconditioner and small
subspace size. We then demonstrated that using an alternative pre-
conditioner solves the convergence issues, which should allow for
more widespread application of the FSM.

We also examined a few ZnxCd1−xTe structures and calculated
their physical properties with hybrid DFT. Formation energy esti-
mations of each structure, as well as analysis of the COHP, indicated
that each structure was stable. We found the bandgap bowing for
high BG superlattices (B = 0.6 eV) to be similar to experimental
and theoretical results, while the bowing for small BG structures
(B = 1.3 eV) was larger.25–27,31–33,35,36 At any given zinc concentra-
tion, the atomic structure of ZnxCd1−xTe superlattices was found to
significantly affect the effective masses. The optical response func-
tions, however, were found to depend very little on specifics of
atomic structure, instead varying mostly with x.

The ability to tune the bandgap by up to 0.2 eV, independent
of zinc concentration, could be used to counteract the bandgap-
lowering reaction of zinc with CdCl2 in ZnxCd1−xTe devices.24 The
ordering of the atomic layers has little effect on the lattice constants.
This, paired with the variance of the bandgap, would make lattice
matching simpler. Furthermore, physical quantities other than BG
may be well-suited for the method. The dependence of the effective
masses on atomic structure, as well as their importance for charge
carrier transport, indicates that an EPM-based exploration or opti-
mization of the effective mass would be a useful tool for designing
high-quality superlattices. It may also be possible to use the EPM
+ FSM to optimize spectral properties such as the DOS or opti-
cal response functions within a certain energy range. In particular,
absorption and reflective characteristics of PV devices are of impor-
tance. One may design a superlattice that maximizes the absorption
coefficient, allowing for a thinner absorber layer. The reflectivity of
ZnxCd1−xTe increases steadily as photon energies approach the UV
range. Certain orderings of atomic layers may be able to minimize
this effect.

The results of this study attest to the usefulness of the
EPM + FSM in optimization problems that would otherwise
be intractable with present-day computational resources. Even
more difficult problems may be solved with global optimization
techniques,12,15 which is a logical next step for future work.

SUPPLEMENTARY MATERIAL

The supplementary material contains explicit modifications
made to the preconditioner of Teter et al.77 Keating force field
parameters as well as the band structures, crystal orbital Hamilton
populations, densities of states, and optical response functions for
ZnTe and CdTe are also provided.
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APPENDIX A: KEATING FORCE FIELD EQUATIONS

The Keating model47 of strain in a solid assigns an energy V to
each atom i located at position xi. V(xi) includes two-term bond
length contributions and three-term bond angle contributions as
follows:

V(xi) =
1

Npairs

Npairs

∑
j

⎡
⎢
⎢
⎢
⎢
⎣

αij

r2
0,i j
(xij ⋅ xij − r2

0,i j)
2
+

1
Ntriplets

×

Ntriplets

∑
k≠j

βjik

r0,ijr0,ik
(xij ⋅ xij − r0,ijr0,ik cos (θ0,jik))

2
⎤
⎥
⎥
⎥
⎥
⎦

, (A1)

where xij ≡ xj − xi, r0,ij is the ideal bond distance for atoms i and j,
and θ0,jik is the ideal bond angle between bond i–j and bond i–k.
The force constants αij and βjik are to be fit to match some refer-
ence data. The sum j runs over every first nearest-neighbor of atom i
(pairs), and the sum k runs over each first nearest-neighbor of atom
i excluding j (triplets).

By applying F = −∇V , the force on atom i can be obtained as

F(xi) =

Npairs

∑
j

⎡
⎢
⎢
⎢
⎢
⎣

xijCij +

Ntriplets

∑
k≠j
(xij + xik)Cijk

⎤
⎥
⎥
⎥
⎥
⎦

,

Cij ≡
4

Npairs
αij(
∣xij ∣

2

r2
0,i j
− 1), (A2)

Cijk ≡
2

NpairsNtriplets

√
βijβik(

xij ⋅ xik

r0,ijr0,ik
− cos (θ0,jik)).

We have also made the simplification that βjik ≈
√
βi jβik to reduce

the number of force constants to fit. This simplification is well
founded. It is, for example, the default mixing rule used in the
large-scale atomic/molecular massively parallel simulator.92

APPENDIX B: EMPIRICAL PSEUDOPOTENTIAL
EQUATIONS

The pseudopotential form chosen used in this study is a combi-
nation of an empty core model similar to that of Ashcroft93 and an
empirical form derived from the one used by Kimball et al.94

Ashcroft’s model, in atomic units, is v(q)
= −3/2EFλ2 cos(py)/(y2

+ λ2g(y)). The full description of
each parameter is given by Ashcroft, Cohen, and Heine.68,93 The
version that we use replaces the screening term in the denominator
by a similar form, which allows for fine adjustments of v, especially
near q0. In standard units, it reads

v1(q) = v0
cos( π2

q
q0
)

1 + (sq)2 , (B1)

where v0 ≡ v1(q = q0), q0 is the q corresponding to the first zero of v,
and s is an adjustable parameter controlling the screening. We use
this form since it is similar to the empty core model for small q,
but includes three adjustable parameters instead of one. v0 should
be chosen (but may be adjusted slightly) as −3/2 the free electron
Fermi energy, q0 can be derived by existing data, such as the tabu-
lated form factors from Cohen and Heine,68 and s is expected to be
less than 1 Å.

Kimball et al.94 used the form v(q) = A
(q − q0) exp[−B(q − q0)]. A and B are adjustable parameters,
and q0 is the q corresponding to the first zero of v. The form that
we use, obtained by replacing A and B (as well as adding a new
parameter n), is similar,

v2(q) = vm(
q − q0

qm − q0
)

n

exp[1 − (
q − q0

qm − q0
)

n

]. (B2)

Here, vm is the first maxima of v past q0 and qm is the value of q
corresponding to vm. n is an adjustable parameter that affects the
width of v. We prefer this form since the values q0, qm, and vm are
easily chosen from existing data, such as the tabulated form factors
from Cohen and Heine.68 In addition, n is expected to be close to
1.0, but may be adjusted.

The Ashcroft model alone does not provide the necessary accu-
racy for describing band structures, but the Kimball form is not

J. Chem. Phys. 161, 064703 (2024); doi: 10.1063/5.0221674 161, 064703-11

Published under an exclusive license by AIP Publishing

 12 August 2024 12:12:08

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

appropriate for the low values of q sampled by large lattices. In addi-
tion, the introduction of n into v2, while useful for adjusting the
potential, can result in numerical issues for q < q0. Thus, the actual
potential that we use is a smoothed piecewise-defined function,

v(q) =
1
2l∫

q+l

q−l
v12(x′)Θ(x′)dx′,

(B3)

v12(q) =
⎧⎪⎪
⎨
⎪⎪⎩

v1, 0 < q < q0,

v2, q0 < q.

The window length l must be chosen large enough that it provides
adequate smoothing of the discontinuity at q0 but small enough that
it does not affect the form of v12 too heavily. We have also intro-
duced Θ, a cutoff function, used to ensure that v → 0 at q = qc, the
q corresponding to the cutoff energy. A general form of the cutoff
function is

Θ(q) =
1
2
{1 + tanh[

r
1 − f

( f +
qm − q
qc − qm

)]}, (B4)

where r (unitless, 0 < r <∞) controls how rapidly Θ approaches
zero and f (unitless, 0 ≤ f < 1) is the fractional distance between qm
and qc of the position at which Θ = 1/2.
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66M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear
optical properties in the projector-augmented wave methodology,” Phys. Rev. B
73, 045112 (2006).
67M. Fox, Optical Properties of Solids, in Oxford Master Series in Physics Condensed
Matter Physics, 2nd ed. (Oxford University Press, Oxford, 2012).
68M. L. Cohen and V. Heine, “The fitting of pseudopotentials to experimental data
and their subsequent application,” Solid State Phys. 24, 37–248 (1970).
69J. Chelikowsky, D. J. Chadi, and M. L. Cohen, “Calculated valence-band
densities of states and photoemission spectra of diamond and zinc-blende
semiconductors,” Phys. Rev. B 8, 2786–2794 (1973).
70J. L. Martins and M. L. Cohen, “Diagonalization of large matrices in pseu-
dopotential band-structure calculations: Dual-space formalism,” Phys. Rev. B 37,
6134–6138 (1988).
71N. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave calcu-
lations. II. Operators for fast iterative diagonalization,” Phys. Rev. B 43, 8861–8869
(1991).
72M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for single
objective continuous space problems: A review,” Evol. Comput. 25, 1–54 (2017).
73P. Paufler, “Landolt-Börnstein. Numerical data and functional relationships in
science and technology. New series, editor in chief: K. H. Hellwege. Group III,
crystal and solid state physics, Vol. 7, crystal structure data of inorganic com-
pounds, W. Pies, A. Weiss, part b, key elements O, S, Se, Te, b3: Key elements
S, Se, Te, Editors: K. H. Hellwege, A. M. Hellwege, Springer-Verlag Berlin 1982,
XXVII, 435 Seiten. Leinen, Preis: DM 740–,” Cryst. Res. Technol. 18, 1318 (1983).
74J. D. H. J. D. H. Donnay and H. M. Ondik, Crystal Data; Determinative Tables,
3rd ed. (National Bureau of Standards, Washington, 19721973).
75K. A. Mäder and A. Zunger, “Empirical atomic pseudopotentials for AlAs/GaAs
superlattices, alloys, and nanostructures,” Phys. Rev. B 50, 17393–17405 (1994).
76W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer
simulation method for the calculation of equilibrium constants for the formation
of physical clusters of molecules: Application to small water clusters,” J. Chem.
Phys. 76, 637–649 (1982).
77M. P. Teter, M. C. Payne, and D. C. Allan, “Solution of Schrödinger’s equation
for large systems,” Phys. Rev. B 40, 12255–12263 (1989).
78A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally opti-
mal block preconditioned conjugate gradient method,” SIAM J. Sci. Comput. 23,
517–541 (2001).
79A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov, “Block locally
optimal preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSc,”
SIAM J. Sci. Comput. 29, 2224–2239 (2007).
80J. R. Winkler, Numerical Recipes In C: The Art Of Scientific Computing, 2nd ed.
(Endeavour, 1993), Vol. 17, pp. 201.
81S. Tomo, J. Langou, J. Dongarra, A. Canning, and L. Wang, “Conjugate-
gradient eigenvalue solvers in computing electronic properties of nanostructure
architectures,” Int. J. Comput. Sci. Eng. 2, 205 (2006).
82J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill,
New York, 1993) oCLC: 221303860, International ed.
83S. Shokhovets, O. Ambacher, and G. Gobsch, “Conduction-band disper-
sion relation and electron effective mass in III–V and II–VI zinc-blende
semiconductors,” Phys. Rev. B 76, 125203 (2007).

J. Chem. Phys. 161, 064703 (2024); doi: 10.1063/5.0221674 161, 064703-13

Published under an exclusive license by AIP Publishing

 12 August 2024 12:12:08

https://pubs.aip.org/aip/jcp
https://doi.org/10.1016/j.spmi.2009.07.026
https://doi.org/10.1103/physrevb.79.245202
https://doi.org/10.1103/physrevb.86.245203
https://doi.org/10.1103/physrevb.86.245203
https://doi.org/10.1007/s00894-013-2004-8
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1103/revmodphys.73.33
https://doi.org/10.1103/physrevx.8.021043
https://doi.org/10.1103/physrevx.8.021043
https://doi.org/10.1103/physrev.139.a796
https://doi.org/10.1088/0034-4885/74/2/026502
https://doi.org/10.1002/qua.560280846
https://doi.org/10.1002/qua.560280846
https://doi.org/10.1103/physrevlett.110.226401
https://doi.org/10.1103/physrevb.101.085115
https://doi.org/10.1103/physrev.145.637
https://doi.org/10.1063/1.466486
https://doi.org/10.1006/jcph.2000.6440
https://doi.org/10.1006/jcph.2000.6440
https://doi.org/10.1103/physrevb.36.3199
https://doi.org/10.1103/physrevb.14.556
https://doi.org/10.1103/physrevb.47.558
https://doi.org/10.1103/physrevb.47.558
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/physrevb.54.11169
https://doi.org/10.1103/physrevb.59.1758
https://doi.org/10.1103/physrevb.50.17953
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1063/1.1564060
https://doi.org/10.1103/physrevb.49.16223
https://doi.org/10.1021/jp202489s
https://doi.org/10.1021/jp202489s
https://doi.org/10.1021/j100135a014
https://doi.org/10.1002/jcc.23424
https://doi.org/10.5506/aphyspolb.47.1165
https://doi.org/10.1002/jcc.26353
https://doi.org/10.1002/jcc.24300
https://doi.org/10.1103/physrevb.73.045112
https://doi.org/10.1016/s0081-1947(08)60070-3
https://doi.org/10.1103/physrevb.8.2786
https://doi.org/10.1103/physrevb.37.6134
https://doi.org/10.1103/physrevb.43.8861
https://doi.org/10.1162/evco_r_00180
https://doi.org/10.1002/crat.2170181018
https://doi.org/10.1103/physrevb.50.17393
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.442716
https://doi.org/10.1103/physrevb.40.12255
https://doi.org/10.1137/s1064827500366124
https://doi.org/10.1137/060661624
https://doi.org/10.1504/ijcse.2006.012774
https://doi.org/10.1103/physrevb.76.125203


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

84Thin Film Solar Cells: Fabrication, Characterization and Applications, 1st ed.,
edited by J. Poortmans and V. Arkhipov (Wiley, 2006).
85Handbook of Photovoltaic Science and Engineering, edited by A. Luque López
and S. Hegedus (Wiley, Chichester, 2009) Repr ed.
86R. D. Paiva, R. A. Nogueira, C. D. Oliveira, H. W. L. Alves, J. L. A. Alves, L.
M. R. Scolfaro, and J. R. Leite, “First-principles calculations of the effective mass
parameters of AlxGa1−xN and ZnxCd1−xTe alloys,” Braz. J. Phys. 32, 405–408
(2002).
87C. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra
for solar energy systems testing,” Sol. Energy 73, 443–467 (2002).
88C. A. Gueymard, “The sun’s total and spectral irradiance for solar energy
applications and solar radiation models,” Sol. Energy 76, 423–453 (2004).
89K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73, 926–931
(1993).

90J. Rangel-Cárdenas and H. Sobral, “Optical absorption enhancement in CdTe
thin films by microstructuration of the silicon substrate,” Materials 10, 607 (2017).
91O. Center, Ohio Supercomputer Center (1987).
92A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D.
Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton,
“LAMMPS—A flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 108171
(2022).
93N. Ashcroft, “Electron-ion pseudopotentials in metals,” Phys. Lett. 23, 48–50
(1966).
94J. C. Kimball, R. W. Stark, and F. M. Mueller, “The Fermi surface of magnesium
III: Local and nonlocal pseudopotential band structure models for magnesium,”
Phys. Rev. 162, 600–608 (1967).

J. Chem. Phys. 161, 064703 (2024); doi: 10.1063/5.0221674 161, 064703-14

Published under an exclusive license by AIP Publishing

 12 August 2024 12:12:08

https://pubs.aip.org/aip/jcp
https://doi.org/10.1590/s0103-97332002000200045
https://doi.org/10.1016/s0038-092x(03)00005-7
https://doi.org/10.1016/j.solener.2003.08.039
https://doi.org/10.1063/1.353305
https://doi.org/10.3390/ma10060607
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1103/physrev.162.600

