- 1. In the equation $\sin q = \lambda/a$ for single-slit diffraction, q is:
 - A) the angle to the first minimum
 - B) the angle to the second maximum
 - C) the phase angle between the extreme rays
 - D) $N\pi$ where *N* is an integer
 - E) $(N + 1/2)\pi$ where N is an integer
- 2. Radio waves are readily diffracted around buildings whereas light waves are negligibly diffracted around buildings. This is because radio waves:
 - A) are plane polarized
 - B) have much longer wavelengths than light waves
 - C) have much shorter wavelengths than light waves
 - D) are nearly monochromatic (single frequency)
 - E) are amplitude modulated (AM)
- 3. No fringes are seen in a single-slit diffraction pattern if:
 - A) the screen is far away
 - B) the slit width is greater than a wavelength
 - C) the slit width is less than a wavelength
 - D) the wavelength is less than the distance to the screen
 - E) none of the above (fringes are always seen)
- 4. A plane wave with a wavelength of 500 nm is incident normally on a single slit with a width of 5.0×10^{-6} m. Consider waves that reach a point on a far-away screen such that rays from the slit make an angle of 1.0° with the normal. The difference in phase for waves from the top and bottom of the slit is:
 - A) 0
 - B) 0.55 rad
 - C) 1.1 rad
 - D) 1.6 rad
 - E) 2.2 rad
- 5. If we increase the wavelength of the light used to form a double-slit diffraction pattern:
 - A) the width of the central diffraction peak increases and the number of bright fringes within the peak increases
 - B) the width of the central diffraction peak increases and the number of bright fringes with the peak decreases
 - C) the width of the central diffraction peak decreases and the number of bright fringes within the peak increases
 - D) the width of the central diffraction peak decreases and the number of bright fringes within the peak decreases
 - E) the width of the central diffraction peak increases and the number of bright fringes within the peak stays the same

- 6. When 450-nm light is incident normally on a certain double-slit system the number of interference maxima within the central diffraction maximum is 5. When 900-nm light is incident on the same slit system the number is:
 - A) 2
 - B) 3
 - C) 5
 - D) 9
 - E) 10
- 7. The resolving power of a telescope can be increased by:
 - A) increasing the objective focal length and decreasing the eyepiece focal length
 - B) increasing the lens diameters
 - C) decreasing the lens diameters
 - D) inserting a correction lens between objective and eyepiece
 - E) none of the above
- 8. Monochromatic light is normally incident on a diffraction grating that is 1 cm wide and has 10,000 slits. The first order line is deviated at a 30° angle. What is the wavelength, in nm, of the incident light?
 - A) 300
 - B) 400
 - C) 500
 - D) 600
 - E) 1000

Answer Key --

- 1. A
- 2. B 3. C
- 3. C 4. C
- 5. E
- 6. C
- 7. B
- 8. C